Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 33(37): 9333-9353, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28595010

RESUMO

Enabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[Ni0.8Co0.15Al0.05]O2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li2CO3 content on the magnitude and character of the dissolution reaction was studied.

2.
Nano Lett ; 16(2): 1132-7, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26756914

RESUMO

Mn-based silicides are fascinating due to their exotic spin textures and unique crystal structures, but the low magnetic ordering temperatures and/or small magnetic moments of bulk alloys are major impediments to their use in practical applications. In sharp contrast to bulk Mn5Si3, which is paramagnetic at room temperature and exhibits low-temperature antiferromagnetic ordering, we show ferromagnetic ordering in Mn5Si3 nanoparticles with a high Curie temperature (Tc ≈ 590 K). The Mn5Si3 nanoparticles have an average size of 8.6 nm and also exhibit large saturation magnetic polarizations (Js = 10.1 kG at 300 K and 12.4 kG at 3 K) and appreciable magnetocrystalline anisotropy constants (K1 = 6.2 Mergs/cm(3) at 300 K and at 12.8 Mergs/cm(3) at 3 K). The drastic change of the magnetic ordering and properties in the nanoparticles are attributed to low-dimensional and quantum-confinement effects, evident from first-principle density-functional-theory calculations.

3.
Nano Lett ; 14(8): 4328-33, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24967848

RESUMO

We present simple, self-assembled, and robust fabrication of ultrahigh density cobalt nanowire arrays. The binary Co-Al and Co-Si systems phase-separate during physical vapor deposition, resulting in Co nanowire arrays with average diameter as small as 4.9 nm and nanowire density on the order of 10(16)/m(2). The nanowire diameters were controlled by moderating the surface diffusivity, which affected the lateral diffusion lengths. High resolution transmission electron microscopy reveals that the Co nanowires formed in the face-centered cubic structure. Elemental mapping showed that in both systems the nanowires consisted of Co with undetectable Al or Si and that the matrix consisted of Al with no distinguishable Co in the Co-Al system and a mixture of Si and Co in the Co-Si system. Magnetic measurements clearly indicate anisotropic behavior consistent with shape anisotropy. The dynamics of nanowire growth, simulated using an Ising model, is consistent with the experimental phase and geometry of the nanowires.

4.
Nat Commun ; 14(1): 5936, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741823

RESUMO

Developing stable and efficient electrocatalysts is vital for boosting oxygen evolution reaction (OER) rates in sustainable hydrogen production. High-entropy oxides (HEOs) consist of five or more metal cations, providing opportunities to tune their catalytic properties toward high OER efficiency. This work combines theoretical and experimental studies to scrutinize the OER activity and stability for spinel-type HEOs. Density functional theory confirms that randomly mixed metal sites show thermodynamic stability, with intermediate adsorption energies displaying wider distributions due to mixing-induced equatorial strain in active metal-oxygen bonds. The rapid sol-flame method is employed to synthesize HEO, comprising five 3d-transition metal cations, which exhibits superior OER activity and durability under alkaline conditions, outperforming lower-entropy oxides, even with partial surface oxidations. The study highlights that the enhanced activity of HEO is primarily attributed to the mixing of multiple elements, leading to strain effects near the active site, as well as surface composition and coverage.

5.
Adv Ther (Weinh) ; 5(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36212523

RESUMO

Pulmonary metastases pose significant treatment challenges for many cancers, including triple-negative breast cancer (TNBC). We developed and tested a novel suicide gene and therapeutic microRNAs (miRs) combination therapy against lung metastases in vivo in mouse models after intranasal delivery using nontoxic gold nanoparticles (AuNPs) formulated to carry these molecular therapeutics. We used AuNPs coated with chitosan-ß-cyclodextrin (CS-CD) and functionalized with a urokinase plasminogen activator (uPA) peptide to carry triple cancer suicide genes (thymidine kinase-p53-nitroreductase: TK-p53-NTR) plus therapeutic miRNAs (antimiR-21, antimiR-10b and miR-100). We synthesized three AuNPs: 20nm nanodots (AuND), and 20nm or 50nm nanostars (AuNS), then surface coated these with CS-CD using a microfluidic-optimized method. We sequentially coated the resulting positively charged AuNP-CS-CD core with synthetic miRNAs followed by TK-p53-NTR via electrostatic interactions, and added uPA peptide through CD-adamantane host-guest chemistry. A comparison of transfection efficiencies for different AuNPs showed that the 50nm AuNS allowed ∼4.16-fold higher gene transfection than other NPs. The intranasal delivery of uPA-AuNS-TK-p53-NTR-microRNAs NPs (pAuNS@TK-p53-NTR-miRs) in mice predominantly accumulated in lungs and facilitated ganciclovir and CB1954 prodrug-mediated gene therapy against TNBC lung metastases. This new nanosystem may serve as an adaptable-across-cancer-type, facile, and clinically scalable platform to allow future inhalational suicide gene-miR combination therapy for patients harboring pulmonary metastases.

6.
ACS Appl Mater Interfaces ; 13(15): 17478-17486, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33844491

RESUMO

In this work, we report the presence of surface-densified phases (ß-Ni5O8, γ-Ni3O4, and δ-Ni7O8) in LiNiO2 (LNO)- and LiNi0.8Al0.2O2 (LNA)-layered compounds by combined atomic level scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). These surface phases form upon electrochemical aging at high state of charge corresponding to a fully delithiated state. A unique feature of these phases is the periodic occupancy by Ni2+ in the Li layer. This periodic Ni occupancy gives rise to extra diffraction reflections, which are qualitatively similar to those of the LiNi2O4 spinel structure, but these surface phases have a lower Ni valence state and cation content than spinel. These experimental results confirm the presence of thermodynamically stable surface phases and provide new insights into the phenomena of surface phase formation in Ni-rich layered structures.

7.
Nanoscale Adv ; 1(12): 4729-4744, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133117

RESUMO

Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate and coalesce at 400 °C. AFM revealed that the particles on the sp3 carbon sites enabled the nanoparticles to aggregate into larger particles. The iron oxide nanoparticles were characterized as having an Fe3+ oxidation state and two different oxygen species, Fe-O and Fe-OH/Fe-OOH, as determined by XPS. STEM imaging and EDS mapping confirmed that the majority of the nanoparticles grown were converted to hematite after annealing at 400 °C. A mechanism of spontaneous and selective deposition on the HOPG surface and transformation of the iron oxide nanoparticles is proposed. These results suggest a simple method for growing nanoparticles as a model catalyst.

8.
Nanoscale ; 10(20): 9504-9508, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29498385

RESUMO

Bulk magnetic materials with the noncentrosymmetric cubic B20 structure are fascinating due to skyrmion spin structures associated with Dzyaloshinskii-Moriya interactions, but the size of skyrmions are generally larger than 50 nm. The control of such spin structures in the 10 nm size ranges is essential to explore them for spintronics, ultra-high-density magnetic recording, and other applications. In this study, we have fabricated MnSi nanoparticles with average sizes of 9.7, 13.1 and 17.7 nm and investigated their structural and magnetic properties. X-ray diffraction and transmission electron microscope studies show that the MnSi nanoparticles crystallize in the cubic B20 structure. Field-dependent dc susceptibility data of the MnSi samples with average particle sizes of 17.7 and 13.1 nm show anomalies in limited field (about 25-400 Oe) and temperature (25 K-43 K) ranges. These features are similar to the signature of the skyrmion-like spin structures observed below the Curie temperature of MnSi. Our results also show that this anomalous behavior is size-dependent and suppressed in the smallest nanoparticles (9.7 nm), and this suppression is interpreted as a confinement effect that leads to a truncation of the skyrmion structure.

9.
Sci Rep ; 4: 6265, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25179756

RESUMO

Nanoscience has been one of the outstanding driving forces in technology recently, arguably more so in magnetism than in any other branch of science and technology. Due to nanoscale bit size, a single computer hard disk is now able to store the text of 3,000,000 average-size books, and today's high-performance permanent magnets--found in hybrid cars, wind turbines, and disk drives--are nanostructured to a large degree. The nanostructures ideally are designed from Co- and Fe-rich building blocks without critical rare-earth elements, and often are required to exhibit high coercivity and magnetization at elevated temperatures of typically up to 180 °C for many important permanent-magnet applications. Here we achieve this goal in exchange-coupled hard-soft composite films by effective nanostructuring of high-anisotropy HfCo7 nanoparticles with a high-magnetization Fe65Co35 phase. An analysis based on a model structure shows that the soft-phase addition improves the performance of the hard-magnetic material by mitigating Brown's paradox in magnetism, a substantial reduction of coercivity from the anisotropy field. The nanostructures exhibit a high room-temperature energy product of about 20.3 MGOe (161.5 kJ/m(3)), which is a record for a rare earth- or Pt-free magnetic material and retain values as high as 17.1 MGOe (136.1 kJ/m(3)) at 180°C.

10.
ACS Nano ; 8(8): 8113-20, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25010729

RESUMO

Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe-Au sub-10 nm nanoparticles, suggesting that they are equilibrium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 compounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three compounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests a antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa