Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39010873

RESUMO

Lung injuries, such as ventilator-induced lung injury and radiation-induced lung injury, can lead to heterogeneous alterations in the biomechanical behavior of the lungs. While imaging methods, e.g., X-ray and static computed tomography (CT), can point to regional alterations in lung structure between healthy and diseased tissue, they fall short of delineating timewise kinematic variations between the former and the latter. Image registration has gained recent interest as a tool to estimate the displacement experienced by the lungs during respiration via regional deformation metrics such as volumetric expansion and distortion. However, successful image registration commonly relies on a temporal series of image stacks with small displacements in the lungs across succeeding image stacks, which remains limited in static imaging. In this study, we have presented a finite element (FE) method to estimate strains from static images acquired at the end-expiration (EE) and end-inspiration (EI) timepoints, i.e., images with a large deformation between the two distant timepoints. Physiologically realistic loads were applied to the geometry obtained at EE to deform this geometry to match the geometry obtained at EI. The results indicated that the simulation could minimize the error between the two geometries. Using four-dimensional (4D) dynamic CT in a rat, the strain at an isolated transverse plane estimated by our method showed sufficient agreement with that estimated through non-rigid image registration that used all the timepoints. Through the proposed method, we can estimate the lung deformation at any timepoint between EE and EI. The proposed method offers a tool to estimate timewise regional deformation in the lungs using only static images acquired at EE and EI.

2.
Heliyon ; 10(5): e26416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468957

RESUMO

The emergence of federated learning (FL) technique in fog-enabled healthcare system has leveraged enhanced privacy towards safeguarding sensitive patient information over heterogeneous computing platforms. In this paper, we introduce the FedHealthFog framework, which was meticulously developed to overcome the difficulties of distributed learning in resource-constrained IoT-enabled healthcare systems, particularly those sensitive to delays and energy efficiency. Conventional federated learning approaches face challenges stemming from substantial compute requirements and significant communication costs. This is primarily due to their reliance on a singular server for the aggregation of global data, which results in inefficient training models. We present a transformational approach to address these problems by elevating strategically placed fog nodes to the position of local aggregators within the federated learning architecture. A sophisticated greedy heuristic technique is used to optimize the choice of a fog node as the global aggregator in each communication cycle between edge devices and the cloud. The FedHealthFog system notably accounts for drop in communication latency of 87.01%, 26.90%, and 71.74%, and energy consumption of 57.98%, 34.36%, and 35.37% respectively, for three benchmark algorithms analyzed in this study. The effectiveness of FedHealthFog is strongly supported by outcomes of our experiments compared to cutting-edge alternatives while simultaneously reducing number of global aggregation cycles. These findings highlight FedHealthFog's potential to transform federated learning in resource-constrained IoT environments for delay-sensitive applications.

3.
Res Sq ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883756

RESUMO

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

4.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895325

RESUMO

Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39055486

RESUMO

Several lung diseases lead to alterations in regional lung mechanics, including ventilator- and radiation-induced lung injuries. Such alterations can lead to localized underventilation of the affected areas, resulting in the overdistension of the surrounding healthy regions. Thus, there has been growing interest in quantifying the dynamics of the lung parenchyma using regional biomechanical markers. Image registration through dynamic imaging has emerged as a powerful tool to assess lung parenchyma's kinematic and deformation behaviors during respiration. However, the difficulty in validating the image registration estimation of lung deformation, primarily due to the lack of ground-truth deformation data, has limited its use in clinical settings. To address this barrier, we developed a method to convert a finite-element (FE) mesh of the lung into a phantom computed tomography (CT) image, advantageously possessing ground-truth information included in the FE model. The phantom CT images generated from the FE mesh replicated the geometry of the lung and large airways that were included in the FE model. Using spatial frequency response, we investigated the effect of " imaging parameters" such as voxel size (resolution) and proximity threshold values on image quality. A series of high-quality phantom images generated from the FE model simulating the respiratory cycle will allow for the validation and evaluation of image registration-based estimations of lung deformation. In addition, the present method could be used to generate synthetic data needed to train machine-learning models to estimate kinematic biomarkers from medical images that could serve as important diagnostic tools to assess heterogeneous lung injuries.

6.
bioRxiv ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39253492

RESUMO

Intracardiac hemodynamics plays a crucial role in the onset and development of cardiac and valvular diseases. Simulations of blood flow in the left ventricle (LV) have provided valuable insight into assessing LV hemodynamics. While fully coupled fluid-solid modelings of the LV remain challenging due to the complex passive-active behavior of the LV wall myocardium, the integration of imaging-driven quantification of structural motion with computational fluid dynamics (CFD) modeling in the LV holds the promise of feasible and clinically translatable characterization of patient-specific LV hemodynamics. In this study, we propose to integrate two magnetic resonance imaging (MRI) modalities with the moving-boundary CFD method to characterize intracardiac LV hemodynamics. Our method uses the standard cine cardiac magnetic resonance (CMR) images to estimate four-dimensional myocardial motion, eliminating the need for involved myocardial material modeling to capture LV wall behavior. In conjunction with CMR, phase contrast-MRI (PC-MRI) was used to measure temporal blood inflow rates at the mitral orifice, serving as an additional boundary condition. Flow patterns, including velocity streamlines, vortex rings, and kinetic energy, were characterized and compared to the available data. Moreover, relationships between LV wall kinematic markers and flow characteristics were determined without myocardial material modeling and using a non-rigid image registration (NRIR) method. The fidelity of the simulation was quantitatively evaluated by validating the flow rate at the aortic outflow tract against respective PC-MRI measures. The proposed methodology offers a novel and feasible toolset that works with standard PC-CMR protocols to improve the clinical assessment of LV characteristics in prognostic studies and surgical planning.

7.
Comput Biol Med ; 181: 109065, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217965

RESUMO

The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.


Assuntos
Imagens de Fantasmas , Camundongos , Animais , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Coração/diagnóstico por imagem , Coração/fisiologia , Modelos Cardiovasculares , Humanos , Análise de Elementos Finitos , Algoritmos
8.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149320

RESUMO

The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.

9.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895261

RESUMO

The quantification of cardiac motion using cardiac magnetic resonance imaging (CMR) has shown promise as an early-stage marker for cardiovascular diseases. Despite the growing popularity of CMR-based myocardial strain calculations, measures of complete spatiotemporal strains (i.e., three-dimensional strains over the cardiac cycle) remain elusive. Complete spatiotemporal strain calculations are primarily hampered by poor spatial resolution, with the rapid motion of the cardiac wall also challenging the reproducibility of such strains. We hypothesize that a super-resolution reconstruction (SRR) framework that leverages combined image acquisitions at multiple orientations will enhance the reproducibility of complete spatiotemporal strain estimation. Two sets of CMR acquisitions were obtained for five wild-type mice, combining short-axis scans with radial and orthogonal long-axis scans. Super-resolution reconstruction, integrated with tissue classification, was performed to generate full four-dimensional (4D) images. The resulting enhanced and full 4D images enabled complete quantification of the motion in terms of 4D myocardial strains. Additionally, the effects of SRR in improving accurate strain measurements were evaluated using an in-silico heart phantom. The SRR framework revealed near isotropic spatial resolution, high structural similarity, and minimal loss of contrast, which led to overall improvements in strain accuracy. In essence, a comprehensive methodology was generated to quantify complete and reproducible myocardial deformation, aiding in the much-needed standardization of complete spatiotemporal strain calculations.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37584008

RESUMO

Calculating cardiac strains through speckle tracking echocardiography (STE) has shown promise as prognostic markers linked to functional indices and disease outcomes. However, the presence of acoustic shadowing often challenges the accuracy of STE in small animals such as rodents. The shadowing arises due to the complex anatomy of rodents, with operator dexterity playing a significant role in image quality. The effects of the semi-transparent shadows are further exacerbated in right ventricular (RV) imaging due to the thinness and rapid motion of the RV free wall (RVFW). The movement of the RVFW across the shadows distorts speckle tracking and produces unnatural and non-physical strains. The objective of this study was to minimize the effects of shadowing on STE by distinguishing "out-of-shadow" motion and identifying speckles in and out of shadow. Parasternal 2D echocardiography was performed, and short-axis B-mode (SA) images of the RVFW were acquired for a rodent model of pulmonary hypertension (n = 1). Following image acquisition, a denoising algorithm using edge-enhancing anisotropic diffusion (EED) was implemented, and the ensuing effects on strain analysis were visualized using a custom STE pipeline. Speckles in the shadowed regions were identified through a correlation between the filtered image and the original acquisition. Thus, pixel movement across the boundary was identified by enhancing the distinction between the shadows and the cardiac wall, and non-physical strains were suppressed. The strains obtained through STE showed expected patterns with enhanced circumferential contractions in the central region of the RVFW in contrast to smaller and nearly uniform strains derived from the unprocessed images.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37565032

RESUMO

There are several lung diseases that lead to alterations in regional lung mechanics, including acute respiratory distress syndrome. Such alterations can lead to localized underventilation of the affected areas resulting in the overdistension of the surrounding healthy regions. They can also lead to the surrounding alveoli expanding unevenly or distorting. Therefore, the quantification of the regional deformation in the lungs offers insights into identifying the regions at risk of lung injury. Although few recent studies have developed image processing techniques to quantify the regional volumetric deformation in the lung from dynamic imaging, the presence and extent of distortional deformation in the lung, and its correlation with volumetric deformation, remain poorly understood. In this study, we present a method that uses the four-dimensional displacement field obtained from image registration to quantify both regional volumetric and distortional deformation in the lung. We used dynamic computed tomography scans in a healthy rat over the course of one respiratory cycle in free breathing. Non-rigid image registration was performed to quantify voxel displacement during respiration. The deformation gradient was calculated using the displacement field and its determinant was used to quantify regional volumetric deformation. Regional distortion was calculated as the ratio of maximum to minimum principal stretches using the isochoric part of the Cauchy green tensor. We found an inverse correlation between volumetric strains and distortion indicating that poorly expanding alveoli tend to experience larger distortion. The combination of regional volumetric strains and distortion may serve as high-fidelity biomarkers to identify the regions at risk of most adverse lung injuries.

12.
Funct Imaging Model Heart ; 13958: 74-83, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37671365

RESUMO

The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.

14.
Indian J Med Sci ; 66(7-8): 192-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23807039

RESUMO

Congenital abnormalities of lung are very rare entity, and very often under or misdiagnosed by physicians. The present case, a 12-year boy, who was initially diagnosed as unilateral massive pleural effusion with collapse of lung, and after thorough investigation, including CT scan of thorax, fiber-optic bronchoscopy, and echocardiography, a final diagnosis of unilateral lung hypoplasia was made. So if a teenager present with a unilateral opaque hemithorax in chest X-ray, this entity may be a differential diagnosis.


Assuntos
Pulmão/anormalidades , Pulmão/diagnóstico por imagem , Derrame Pleural/diagnóstico por imagem , Radiografia Torácica/métodos , Broncoscopia , Criança , Diagnóstico Diferencial , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa