Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7980): 740-745, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648868

RESUMO

The control over quantum states in atomic systems has led to the most precise optical atomic clocks so far1-3. Their sensitivity is bounded at present by the standard quantum limit, a fundamental floor set by quantum mechanics for uncorrelated particles, which can-nevertheless-be overcome when operated with entangled particles. Yet demonstrating a quantum advantage in real-world sensors is extremely challenging. Here we illustrate a pathway for harnessing large-scale entanglement in an optical transition using 1D chains of up to 51 ions with interactions that decay as a power-law function of the ion separation. We show that our sensor can emulate many features of the one-axis-twisting (OAT) model, an iconic, fully connected model known to generate scalable squeezing4 and Greenberger-Horne-Zeilinger-like states5-8. The collective nature of the state manifests itself in the preservation of the total transverse magnetization, the reduced growth of the structure factor, that is, spin-wave excitations (SWE), at finite momenta, the generation of spin squeezing comparable with OAT (a Wineland parameter9,10 of -3.9 ± 0.3 dB for only N = 12 ions) and the development of non-Gaussian states in the form of multi-headed cat states in the Q-distribution. We demonstrate the metrological utility of the states in a Ramsey-type interferometer, in which we reduce the measurement uncertainty by -3.2 ± 0.5 dB below the standard quantum limit for N = 51 ions.

2.
Phys Rev Lett ; 131(15): 150401, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37897760

RESUMO

Using a recently developed extension of the time-dependent variational principle for matrix product states, we evaluate the dynamics of 2D power-law interacting XXZ models, implementable in a variety of state-of-the-art experimental platforms. We compute the spin squeezing as a measure of correlations in the system, and compare to semiclassical phase-space calculations utilizing the discrete truncated Wigner approximation (DTWA). We find the latter efficiently and accurately captures the scaling of entanglement with system size in these systems, despite the comparatively resource-intensive tensor network representation of the dynamics. We also compare the steady-state behavior of DTWA to thermal ensemble calculations with tensor networks. Our results open a way to benchmark dynamical calculations for two-dimensional quantum systems, and allow us to rigorously validate recent predictions for the generation of scalable entangled resources for metrology in these systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa