Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Methods ; 14(2): 160-166, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941784

RESUMO

The precise manipulation of microcirculation in mice can facilitate mechanistic studies of brain injury and repair after ischemia, but this manipulation remains a technical challenge, particularly in conscious mice. We developed a technology that uses micromagnets to induce aggregation of magnetic nanoparticles to reversibly occlude blood flow in microvessels. This allowed induction of ischemia in a specific cortical region of conscious mice of any postnatal age, including perinatal and neonatal stages, with precise spatiotemporal control but without surgical intervention of the skull or artery. When combined with longitudinal live-imaging approaches, this technology facilitated the discovery of a feature of the ischemic cascade: selective loss of smooth muscle cells in juveniles but not adults shortly after onset of ischemia and during blood reperfusion.


Assuntos
Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/fisiopatologia , Nanopartículas de Magnetita/efeitos adversos , Animais , Isquemia Encefálica/tratamento farmacológico , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Células HEK293 , Hipocampo/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia
2.
Drug Metab Dispos ; 42(12): 1991-2001, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25271211

RESUMO

The aim of the present work was to perform a systematic review of drug metabolism, transport, pharmacokinetics, and DDI data available in the NDAs approved by the FDA in 2013, using the University of Washington Drug Interaction Database, and to highlight significant findings. Among 27 NMEs approved, 22 (81%) were well characterized with regard to drug metabolism, transport, or organ impairment, in accordance with the FDA drug interaction guidance (2012) and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. However, in vivo, only half (n = 11) showed clinically relevant drug interactions, with most related to the NMEs as victim drugs and CYP3A being the most affected enzyme. As perpetrators, the overall effects for NMEs were much less pronounced, compared with when they served as victims. In addition, the pharmacokinetic evaluation in patients with hepatic or renal impairment provided useful information for further understanding of the drugs' disposition.


Assuntos
Interações Medicamentosas/fisiologia , Inativação Metabólica/fisiologia , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Humanos , Estados Unidos , United States Food and Drug Administration
3.
Antimicrob Agents Chemother ; 57(6): 2705-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545524

RESUMO

Fluoroquinolones (FQs) are important antimicrobials that exhibit activity against a wide range of bacterial pathogens and excellent tissue permeation. They exist as charged molecules in biological fluids, and thus, their disposition depends heavily on active transport and facilitative diffusion. A recent review of the clinical literature indicated that tubular secretion and reabsorption are major determinants of their half-life in plasma, efficacy, and drug-drug interactions. In particular, reported in vivo interactions between FQs and cationic drugs affecting renal clearance implicated organic cation transporters (OCTs). In this study, 13 FQs, ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, levofloxacin, lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, and sparfloxacin, were screened for their ability to inhibit transport activity of human OCT1 (hOCT1) (SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). All, with the exception of enoxacin, significantly inhibited hOCT1-mediated uptake under initial test conditions. None of the FQs inhibited hOCT2, and only moxifloxacin inhibited hOCT3 (~30%), even at a 1,000-fold excess. Gatifloxacin, moxifloxacin, prulifloxacin, and sparfloxacin were determined to be competitive inhibitors of hOCT1. Inhibition constants (K(i)) were estimated to be 250 ± 18 µM, 161 ± 19 µM, 136 ± 33 µM, and 94 ± 8 µM, respectively. Moxifloxacin competitively inhibited hOCT3-mediated uptake, with a K(i) value of 1,598 ± 146 µM. Despite expression in enterocytes (luminal), hepatocytes (sinusoidal), and proximal tubule cells (basolateral), hOCT3 does not appear to contribute significantly to FQ disposition. However, hOCT1 in the sinusoidal membrane of hepatocytes, and potentially the basolateral membrane of proximal tubule cells, is likely to play a role in the disposition of these antimicrobial agents.


Assuntos
Anti-Infecciosos/metabolismo , Fluoroquinolonas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transporte Biológico Ativo , Interações Medicamentosas , Enterócitos/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Transportador 2 de Cátion Orgânico
4.
Front Med (Lausanne) ; 10: 1199146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441689

RESUMO

Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.

5.
ACS Infect Dis ; 8(8): 1663-1673, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35869564

RESUMO

The increasing prevalence and severity of invasive fungal infections (IFIs), especially in immunocompromised populations, has amplified the need for rapid diagnosis of fungal pathogens. Radiotracers derived from d-amino acids (DAAs) show promise as bacterial-specific positron emission tomography (PET) imaging agents due to their preferential consumption by bacteria and largely nonutilization by hosts. Unlike mammals, fungi can utilize external DAAs including d-glutamine for their growth by rapidly upregulating DAA oxidases. Additionally, glutamine is essential for fungal nitrogen assimilation, survival, and virulence. We previously validated d-[5-11C]-glutamine (d-[5-11C]-Gln) as an efficient radiotracer targeting live bacterial soft-tissue infections. Here, we further expanded this investigation to evaluate its translational potential for PET imaging of IFIs in immunocompetent mouse models subcutaneously (SubQ) and intramuscularly (IM) infected with Candida albicans (C. albicans), using its l-isomer counterpart (l-[5-11C]-Gln) as a control. Comparative studies between pathogens showed significantly (p < 0.05) higher uptake in fungi (C. albicans and C. tropicalis) versus tested bacterial species for d-[5-11C]-Gln, suggesting that it could potentially serve as a more sensitive radiotracer for detection of fungal infections. Additionally, comparative PET imaging studies in immunocompetent infected mice demonstrated significantly higher infection-to-background ratios for d- versus l-[5-11C]-Gln in both SubQ (ratio = 1.97, p = 0.043) and IM (ratio = 1.97, p = 0.028) infections. Fungal infection imaging specificity was confirmed with no significant difference observed between localized inflammation sites versus untreated muscle background (heat-killed injection site/untreated muscle: ∼1.1). Taken together, this work demonstrates the translational potential of d-[5-11C]-Gln for noninvasive PET imaging of IFIs.


Assuntos
Infecções Fúngicas Invasivas , Micoses , Animais , Candida albicans , Glutamina/química , Mamíferos , Camundongos , Tomografia por Emissão de Pósitrons
6.
Clin Cancer Res ; 28(22): 4907-4916, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36074149

RESUMO

PURPOSE: Immune checkpoint inhibitors (ICI) targeting the programmed cell death protein 1 and its ligand (PD-1/PD-L1) have transformed the treatment paradigm for metastatic renal cell carcinoma (RCC). However, response rates to ICIs as single agents or in combination vary widely and predictive biomarkers are lacking. Possibly related to the heterogeneity and dynamic nature of PD-L1 expression, tissue-based methods have shown limited value. Immuno-positron emission tomography (immunoPET) may enable noninvasive, comprehensive, and real-time PD-L1 detection. Herein, we systematically examined the performance of immunoPET for PD-L1 detection relative to IHC in an RCC patient-derived tumorgraft (TG) platform. EXPERIMENTAL DESIGN: Eight independent RCC TGs with a wide range of PD-L1 expression (0%-85%) were evaluated by immunoPET. Uptake of 89Zr-labeled atezolizumab ([89Zr]Zr-DFO-ATZ) was compared with PD-L1 expression in tumors by IHC through double-blind analyses. Clinical outcomes of ICI-treated patients whose TGs were examined were analyzed to evaluate the clinical role of immunoPET in RCC. RESULTS: ImmunoPET with [89Zr]Zr-DFO-ATZ (day 6/7 postinjection) revealed a statistically significant association with PD-L1 IHC assays (P = 0.0014; correlation ρXY = 0.78). Furthermore, immunoPET can be used to assess the heterogeneous distribution of PD-L1 expression. Finally, studies in the corresponding patients (n = 4) suggest that PD-L1 signal may influence ICI responsiveness. CONCLUSIONS: ImmunoPET with [89Zr]Zr-DFO-ATZ may enable a thorough and dynamic assessment of PD-L1 across sites of disease. The power of immunoPET to predict ICI response in RCC is being explored in an ongoing clinical trial (NCT04006522).


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Antígeno B7-H1/metabolismo , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/tratamento farmacológico , Radioisótopos , Distribuição Tecidual , Zircônio , Ensaios Clínicos como Assunto
7.
Artigo em Inglês | MEDLINE | ID: mdl-33047504

RESUMO

Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanopartículas Metálicas , Compostos Radiofarmacêuticos , Nanomedicina Teranóstica , Imagem Molecular , Compostos Radiofarmacêuticos/farmacocinética
8.
ACS Infect Dis ; 7(2): 347-361, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33476123

RESUMO

Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Animais , Bactérias , Escherichia coli , Glutamina , Camundongos
9.
Cell Rep ; 37(8): 110055, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818533

RESUMO

Renal cell carcinoma (RCC) encompasses a heterogenous group of tumors, but representative preclinical models are lacking. We previously showed that patient-derived tumorgraft (TG) models recapitulate the biology and treatment responsiveness. Through systematic orthotopic implantation of tumor samples from 926 ethnically diverse individuals into non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice, we generate a resource comprising 172 independently derived, stably engrafted TG lines from 148 individuals. TG lines are characterized histologically and genomically (whole-exome [n = 97] and RNA [n = 102] sequencing). The platform features a variety of histological and oncogenotypes, including TCGA clades further corroborated through orthogonal metabolomic analyses. We illustrate how it enables a deeper understanding of RCC biology; enables the development of tissue- and imaging-based molecular probes; and supports advances in drug development.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Medicina de Precisão/métodos
10.
J Pharmacol Exp Ther ; 334(3): 927-35, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20519554

RESUMO

Organic anion transporter 6 (Oat6; Slc22a20), a member of the OAT family, was demonstrated previously to mediate the transport of organic anions (Am J Physiol Renal Physiol 291:F314-F321, 2006). In the present study, we sought to further delineate the function of murine Oat6 (mOat6) by analyzing the effect of select organic anions on mOat6-mediated transport by using a Chinese hamster ovary (CHO) cell line stably expressing mOat6 (CHO-mOat6). When examined, kinetic analysis demonstrated that the mechanism of inhibition of mOat6 and mOat3 was competitive. Homovanillic acid, 5-hydroxyindole acetic acid, 2,4-dihydroxyphenylacetate, hippurate, and dehydroepiandrosterone sulfate (DHEAS) each significantly reduced mOat6 activity with inhibitory constant (K(i)) values of 3.0 +/- 0.5, 48.9 +/- 10.3, 61.4 +/- 7.1, 59.9 +/- 4.9, and 38.8 +/- 3.1 microM, respectively. Comparison to K(i) values determined for mOat3 (67.8 +/- 7.2, 134.5 +/- 27.0, 346.7 +/- 97.9, 79.3 +/- 4.0, and 3.8 +/- 1.1 microM, respectively) revealed that there are significant differences in compound affinity between each transporter. Fluoroquinolone antimicrobials and reduced folates were without effect on mOat6-mediated uptake. Investigation of testicular cell type-specific expression of mOat6 by laser capture microdissection and quantitative polymerase chain reaction revealed significant mRNA expression in Sertoli cells, but not in Leydig cells or spermatids. Overall, these data should aid further refinements to the interpretation and modeling of the in vivo disposition of OAT substrates. Specifically, expression in Sertoli cells suggests Oat6 may be an important determinant of blood-testis barrier function, with Oat6-mediated transport of estrone sulfate and DHEAS possibly representing a critical step in the maintenance of testicular steroidogenesis.


Assuntos
Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Células de Sertoli/metabolismo , Animais , Barreira Hematotesticular/fisiologia , Células CHO , Cricetinae , Cricetulus , Sulfato de Desidroepiandrosterona/metabolismo , Estrona/análogos & derivados , Estrona/metabolismo , Cinética , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Microdissecção , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermátides/efeitos dos fármacos , Espermátides/metabolismo , Especificidade por Substrato
11.
Transplantation ; 104(11): 2307-2316, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32541557

RESUMO

BACKGROUND: Although the liver is the primary site for clinical islet transplantation, it poses several restrictions, especially limited tissue volume due to portal vein pressure. We evaluated the preperitoneal space as an extrahepatic islet transplant site to deliver high tissue volumes and sustain long-term graft function. METHODS: A peritoneal pouch was formed by dissecting the parietal peritoneum from the transversalis fascia of mice. Syngeneic C57BL/6 donor islets were transplanted into the peritoneal pouch of diabetic mouse recipients. Blood glucose was monitored for islet function, and miR-375 was analyzed for islet damage. Islet graft morphology and vascularization were evaluated by immunohistochemistry. [F] fluoro-D-glucose positron emission tomography/computed tomography was used to image islet grafts. RESULTS: Transplantation of 300 syngeneic islets into the peritoneal pouch of recipients reversed hyperglycemia for >60 days. Serum miR-375 was significantly lower in the peritoneal pouch group than in the peritoneal cavity group. Peritoneal pouch islet grafts showed high neovascularization and sustained insulin and glucagon expression up to 80 days posttransplantation. A peritoneal pouch graft with high tissue volume (1000 islets) could be visualized by positron emission tomography/computed tomography imaging. Human islets transplanted into the peritoneal pouch of diabetic nude mice also reversed hyperglycemia successfully. CONCLUSIONS: Islets transplanted into a dissected peritoneal pouch show high efficiency to reverse diabetes and sustain islet graft function. The preperitoneal site has the advantages of capacity for high tissue volume, enriched revascularization and minimal inflammatory damage. It can also serve as an extrahepatic site for transplanting large volume of islets necessitated in islet autotransplantation.


Assuntos
Diabetes Mellitus Experimental/cirurgia , Sobrevivência de Enxerto , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/cirurgia , Peritônio/cirurgia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Humanos , Insulina/sangue , Ilhotas Pancreáticas/diagnóstico por imagem , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/sangue , Peritônio/diagnóstico por imagem , Peritônio/metabolismo , Fatores de Tempo , Transplante Isogênico
12.
Cell Host Microbe ; 27(3): 376-388.e8, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32075741

RESUMO

During short-lived perturbations, such as inflammation, the gut microbiota exhibits resilience and reverts to its original configuration. Although microbial access to the micronutrient iron is decreased during colitis, pathogens can scavenge iron by using siderophores. How commensal bacteria acquire iron during gut inflammation is incompletely understood. Curiously, the human commensal Bacteroides thetaiotaomicron does not produce siderophores but grows under iron-limiting conditions using enterobacterial siderophores. Using RNA-seq, we identify B. thetaiotaomicron genes that were upregulated during Salmonella-induced gut inflammation and were predicted to be involved in iron uptake. Mutants in the xusABC locus (BT2063-2065) were defective for xenosiderophore-mediated iron uptake in vitro. In the normal mouse gut, the XusABC system was dispensable, while a xusA mutant colonized poorly during colitis. This work identifies xenosiderophore utilization as a critical mechanism for B. thetaiotaomicron to sustain colonization during inflammation and suggests a mechanism of how interphylum iron metabolism contributes to gut microbiota resilience.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Colite/microbiologia , Enterobacteriaceae/genética , Microbioma Gastrointestinal , Ferro/metabolismo , Sideróforos/genética , Animais , Bacteroides thetaiotaomicron/genética , Feminino , Genes Bacterianos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq , Simbiose
13.
Cell Rep ; 30(8): 2489-2500.e5, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101730

RESUMO

Emerging evidence suggests that crosstalk between glioma cells and the brain microenvironment may influence brain tumor growth. To date, known reciprocal interactions among these cells have been limited to the release of paracrine factors. Combining a genetic strategy with longitudinal live imaging, we find that individual gliomas communicate with distinct sets of non-glioma cells, including glial cells, neurons, and vascular cells. Transfer of genetic material is achieved mainly through extracellular vesicles (EVs), although cell fusion also plays a minor role. We further demonstrate that EV-mediated communication leads to the increase of synaptic activity in neurons. Blocking EV release causes a reduction of glioma growth in vivo. Our findings indicate that EV-mediated interaction between glioma cells and non-glioma brain cells alters the tumor microenvironment and contributes to glioma development.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Comunicação Celular , Vesículas Extracelulares/metabolismo , Glioma/patologia , Animais , Astrócitos/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Fusão Celular , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Fenômenos Eletrofisiológicos , Vesículas Extracelulares/ultraestrutura , Glioma/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neurônios/patologia , Imagem com Lapso de Tempo
14.
J Immunother Cancer ; 7(1): 144, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155004

RESUMO

BACKGROUND: Programmed death-ligand 1 (PD-L1) expression in metastatic renal cell carcinoma (RCC) correlates with a worse prognosis, but whether it also predicts responsiveness to anti-PD-1/PD-L1 therapy remains unclear. Most studies of PD-L1 are limited by evaluation in primary rather than metastatic sites, and in biopsy samples, which may not be representative. These limitations may be overcome with immuno-positron emission tomography (iPET), an emerging tool allowing the detection of cell surface proteins with radiolabeled antibodies. Here, we report iPET studies of PD-L1 in a preclinical tumorgraft model of clear cell RCC (ccRCC) from a patient who had a favorable response to anti-PD-1 therapy. CASE PRESENTATION: A 49-year-old man underwent a cytoreductive nephrectomy in 2017 of a right kidney tumor invading into the adrenal gland that was metastatic to the lungs and a rib. Histological analyses revealed a ccRCC of ISUP grade 4 with extensive sarcomatoid features. IMDC risk group was poor. Within two hours of surgery, a tumor sample was implanted orthotopically into NOD/SCID mice. Consistent with an aggressive tumor, a renal mass was detected 18 days post-implantation. Histologically, the tumorgraft showed sarcomatoid differentiation and high levels of PD-L1, similar to the patient's tumor. PD-L1 was evaluated in subsequently transplanted mice using iPET and the results were compared to control mice implanted with a PD-L1-negative tumor. We labeled atezolizumab, an anti-PD-L1 antibody with a mutant Fc, with zirconium-89. iPET revealed significantly higher 89Zr-atezolizumab uptake in index than control tumorgrafts. The patient was treated with high-dose IL2 initially, and subsequently with pazopanib, with rapidly progressive disease, but had a durable response with nivolumab. CONCLUSIONS: To our knowledge, this is the first report of non-invasive detection of PD-L1 in renal cancer using molecular imaging. This study supports clinical evaluation of iPET to identify RCC patients with tumors deploying the PD-L1 checkpoint pathway who may be most likely to benefit from PD-1/PD-L1 disrupting drugs.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/metabolismo , Tomografia por Emissão de Pósitrons , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Nivolumabe/administração & dosagem , Nivolumabe/efeitos adversos , Nivolumabe/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
15.
Nanomedicine (Lond) ; 13(14): 1695-1705, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29786467

RESUMO

Aim: To synthesize and evaluate the imaging potential of Bom-PEG-[64Cu]CuS nanoparticles (NPs) in orothotopic prostate tumor. Materials & methods: [64Cu]CuS NPs were synthesized in aqueous solution by 64CuCl2 and Na2S reaction. Then PEG linker with or without bombesin peptide were conjugated to the surface of [64Cu]CuS NPs to produce Bom-PEG-[64Cu]CuS and PEG-[64Cu]CuS NPs. These two kinds of NPs were used for testing specific uptake in prostate cancer cells in vitro and imaging of orthotopic prostate tumor in vivo. Results: Bom-PEG-[64Cu]CuS and PEG-[64Cu]CuS NPs were successfully synthesized with core diameter of approximately 5 nm. Radioactive cellular uptake revealed that Bom-PEG-[64Cu]CuS was able to specifically bind to prostate cancer cells, and the microPET-CT imaging indicated clear visualization of orthotopic prostate tumors. Conclusion: Radiolabeled Bom-PEG-[64Cu]CuS NPs have potential as an ideal agent for orthotopic prostate tumor imaging by microPET-CT.

16.
J Clin Invest ; 128(2): 580-588, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29337303

RESUMO

Programmed death-ligand 1 (PD-L1) expression on tumor cells is essential for T cell impairment, and PD-L1 blockade therapy has shown unprecedented durable responses in several clinical studies. Although higher expression of PD-L1 on tumor cells is associated with a better immune response after Ab blockade, some PD-L1-negative patients also respond to this therapy. In the current study, we explored whether PD-L1 on tumor or host cells was essential for anti-PD-L1-mediated therapy in 2 different murine tumor models. Using real-time imaging in whole tumor tissues, we found that anti-PD-L1 Ab accumulates in tumor tissues, regardless of the status of PD-L1 expression on tumor cells. We further observed that, while PD-L1 on tumor cells was largely dispensable for the response to checkpoint blockade, PD-L1 in host myeloid cells was essential for this response. Additionally, PD-L1 signaling in defined antigen-presenting cells (APCs) negatively regulated and inhibited T cell activation. PD-L1 blockade inside tumors was not sufficient to mediate regression, as limiting T cell trafficking reduced the efficacy of the blockade. Together, these findings demonstrate that PD-L1 expressed in APCs, rather than on tumor cells, plays an essential role in checkpoint blockade therapy, providing an insight into the mechanisms of this therapy.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Anticorpos Monoclonais/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Imunidade Celular , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Microambiente Tumoral/imunologia
17.
Sci Rep ; 6: 20614, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26852805

RESUMO

Malignant tumors are considered "unresectable" if they are adhere to vital structures or the surgery would cause irreversible damages to the patients. Though a variety of cytotoxic drugs and radiation therapies are currently available in clinical practice to treat such tumor masses, these therapeutic modalities are always associated with substantial side effects. Here, we report an injectable nanoparticle-based internal radiation source that potentially offers more efficacious treatment of unresectable solid tumors without significant adverse side effects. Using a highly efficient incorporation procedure, palladium-103, a brachytherapy radioisotope in clinical practice, was coated to monodispersed hollow gold nanoparticles with a diameter about 120 nm, to form (103)Pd@Au nanoseeds. The therapeutic efficacy of (103)Pd@Au nanoseeds were assessed when intratumorally injected into a prostate cancer xenograft model. Five weeks after a single-dose treatment, a significant tumor burden reduction (>80%) was observed without noticeable side effects on the liver, spleen and other organs. Impressively, >95% nanoseeds were retained inside the tumors as monitored by Single Photon Emission Computed Tomography (SPECT) with the gamma emissions of (103)Pd. These findings show that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors.


Assuntos
Nanoestruturas/química , Neoplasias da Próstata/radioterapia , Nanomedicina Teranóstica , Animais , Braquiterapia , Linhagem Celular Tumoral , Ouro/química , Humanos , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos SCID , Nanoestruturas/uso terapêutico , Paládio/química , Tamanho da Partícula , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Radioisótopos , Tomografia Computadorizada de Emissão de Fóton Único , Transplante Heterólogo
18.
Expert Opin Drug Metab Toxicol ; 8(5): 553-69, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22435536

RESUMO

INTRODUCTION: Fluoroquinolones (FQs) exist as charged molecules in blood and urine making their absorption, distribution, and elimination likely to be influenced by active transport mechanisms. Greater understanding of in vivo FQ clearance mechanisms should help improve the predictability of drug-drug interactions, enhance the clinical safety and efficacy, and aid future novel drug design strategies. AREAS COVERED: The authors present an overview of FQ development and associated drug-drug interactions, followed by systematic quantitative review of the physicochemical and in vivo pharmacokinetic properties for 15 representative FQs using historical clinical literature. These results were correlated with in vitro studies implicating drug transporters in FQ clearance to link clinical and in vitro evidence supporting the contribution of drug transport mechanisms to FQ disposition. Specific transporters likely to handle FQs in human renal proximal tubule cells are also identified. EXPERT OPINION: Renal handling, that is, tubular secretion and reabsorption, appears to be the main determinant of FQ plasma half-life, clinical duration of action, and drug-drug interactions. Due to their zwitterionic nature, FQs are likely to interact with organic anion and cation transporters within the solute carrier (SLC) superfamily, including OAT1, OAT3, OCT2, OCTN1, OCTN2, MATE1, and MATE2. The ATP-binding cassette (ABC) transporters MDR1, MRP2, MRP4, and BCRP also may interact with FQs.


Assuntos
Fluoroquinolonas/farmacocinética , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico Ativo , Desenho de Fármacos , Interações Medicamentosas , Fluoroquinolonas/sangue , Meia-Vida , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa