Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7948): 479-485, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792735

RESUMO

Thwaites Glacier is one of the fastest-changing ice-ocean systems in Antarctica1-3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show-using observations from a hot-water-drilled access hole-that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice-ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.

2.
Proc Biol Sci ; 290(1998): 20230551, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161330

RESUMO

Dispersal of eggs and larvae from spawning sites is critical to the population dynamics and conservation of marine fishes. For overfished species like critically endangered Nassau grouper (Epinephelus striatus), recovery depends on the fate of eggs spawned at the few remaining aggregation sites. Biophysical models can predict larval dispersal, yet these rely on assumed values of key parameters, such as diffusion and mortality rates, which have historically been difficult or impossible to estimate. We used in situ imaging to record three-dimensional positions of individual eggs and larvae in proximity to oceanographic drifters released into egg plumes from the largest known Nassau grouper spawning aggregation. We then estimated a diffusion-mortality model and applied it to previous years' drifter tracks to evaluate the possibility of retention versus export to nearby sites within 5 days of spawning. Results indicate that larvae were retained locally in 2011 and 2017, with 2011 recruitment being a substantial driver of population recovery on Little Cayman. Export to a nearby island with a depleted population occurred in 2016. After two decades of protection, the population appears to be self-replenishing but also capable of seeding recruitment in the region, supporting calls to incorporate spawning aggregation protections into fisheries management.


Assuntos
Jacarés e Crocodilos , Bass , Animais , Larva , Biofísica , Pesqueiros
3.
Sci Adv ; 9(43): eadi7638, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889975

RESUMO

Ocean conditions near the grounding zones of Antarctica's ice shelves play a key role in controlling the outflow and mass balance of the ice sheet. However, ocean observations in these regions are largely absent. Here, we present a detailed spatial survey collected with an underwater vehicle in a basal crevasse located in the ocean cavity at the Ross Ice Shelf grounding zone. The observations depict fine-scale variability in ocean forcing that drives asymmetric melting along the lower crevasse sidewalls and freezing in the upper reaches of the crevasse. Freshwater release from melting at depth and salt rejection from freezing above drives an overturning circulation. This vertical circulation pattern overlays a dominant throughflow jet, which funnels water parallel to the coastline, orthogonal to the direction of tidal currents. Importantly, these data reveal that basal crevasses influence ocean circulation and mixing at ice shelf grounding zones to an extent previously unknown.

4.
Nat Commun ; 7: 12093, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27403715

RESUMO

Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa