Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917494

RESUMO

Repressor protein period (PER) complexes play a central role in the molecular oscillator mechanism of the mammalian circadian clock. While the main role of nuclear PER complexes is transcriptional repression, much less is known about the functions of cytoplasmic PER complexes. We found with a biochemical screen for PER2-interacting proteins that the small GTPase regulator GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), which has been identified previously as a component of cytoplasmic PER complexes in mice, is also a bona fide component of human PER complexes. We show that in situ GAPVD1 is closely associated with casein kinase 1 delta (CSNK1D), a kinase that regulates PER2 levels through a phosphoswitch mechanism, and that CSNK1D regulates the phosphorylation of GAPVD1. Moreover, phosphorylation determines the kinetics of GAPVD1 degradation and is controlled by PER2 and a C-terminal autoinhibitory domain in CSNK1D, indicating that the regulation of GAPVD1 phosphorylation is a novel function of cytoplasmic PER complexes and might be part of the oscillator mechanism or an output function of the circadian clock.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Circadianas Period/metabolismo , Proteólise , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Relógios Circadianos , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Proteínas Circadianas Period/genética , Fosforilação
2.
Vaccines (Basel) ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38005974

RESUMO

SARS-CoV-2 mRNA vaccination can entail chronic fatigue/dysautonomia tentatively termed post-acute COVID-19 vaccination syndrome (PACVS). We explored receptor autoantibodies and interleukin-6 (IL-6) as somatic correlates of PACVS. Blood markers determined before and six months after first-time SARS-CoV-2 vaccination of healthy controls (N = 89; 71 females; mean/median age: 39/49 years) were compared with corresponding values of PACVS-affected persons (N = 191; 159 females; mean/median age: 40/39 years) exhibiting chronic fatigue/dysautonomia (≥three symptoms for ≥five months after the last SARS-CoV-2 mRNA vaccination) not due to SARS-CoV-2 infection and/or confounding diseases/medications. Normal vaccination response encompassed decreases in 11 receptor antibodies (by 25-50%, p < 0.0001), increases in two receptor antibodies (by 15-25%, p < 0.0001) and normal IL-6. In PACVS, serological vaccination-response appeared significantly (p < 0.0001) altered, allowing discrimination from normal post-vaccination state (sensitivity = 90%, p < 0.0001) by increased Angiotensin II type 1 receptor antibodies (cut-off ≤ 10.7 U/mL, ROC-AUC = 0.824 ± 0.027), decreased alpha-2B adrenergic receptor antibodies (cut-off ≥ 25.2 U/mL, ROC-AUC = 0.828 ± 0.025) and increased IL-6 (cut-off ≤ 2.3 pg/mL, ROC-AUC = 0.850 ± 0.022). PACVS is thus indicated as a somatic syndrome delineated/detectable by diagnostic blood markers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa