Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073052

RESUMO

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an economically important legume playing a crucial role in the semi-arid tropics. Pigeonpea is susceptible to Helicoverpa armigera (Hübner), which causes devastating yield losses. This pest is developing resistance to many commercially available insecticides. Therefore, crop wild relatives of pigeonpea, are being considered as potential sources of genes to expand the genetic base of cultivated pigeonpea to improve traits such as host plant resistance to pests and pathogens. Quantitative proteomic analysis was conducted using the tandem mass tag platform to identify differentially abundant proteins between IBS 3471 and ICPL 87 tolerant accession and susceptible variety to H. armigera, respectively. Leaf proteome were analysed at the vegetative and flowering/podding growth stages. H. armigera tolerance in IBS 3471 appeared to be related to enhanced defence responses, such as changes in secondary metabolite precursors, antioxidants, and the phenylpropanoid pathway. The development of larvae fed on an artificial diet with IBS 3471 lyophilised leaves showed similar inhibition with those fed on an artificial diet with quercetin concentrations with 32 mg/25 g of artificial diet. DAB staining (3,3'-diaminobenzidine) revealed a rapid accumulation of reactive oxygen species in IBS 3471. We conclude that IBS 3471 is an ideal candidate for improving the genetic base of cultivated pigeonpea, including traits for host plant resistance.


Assuntos
Cajanus/metabolismo , Mariposas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Animais , Larva , Proteoma
2.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396747

RESUMO

Insect pests pose a serious threat to global food production. Pod borer (Helicoverpa armigera (Hübner)) is one of the most destructive pests of leguminous crops. The use of host resistance has been an effective, environmentally friendly and sustainable approach for controlling several agricultural pests. The exploitation of natural variations in crop wild relatives could yield pest-resistant crop varieties. In this study, we used a high-throughput transcriptome profiling approach to investigate the defense mechanisms of susceptible cultivated and tolerant wild pigeonpea genotypes against H. armigera infestation. The wild genotype displayed elevated pest-induced gene expression, including the enhanced induction of phytohormone and calcium/calmodulin signaling, transcription factors, plant volatiles and secondary metabolite genes compared to the cultivated control. The biosynthetic and regulatory processes associated with flavonoids, terpenes and glucosinolate secondary metabolites showed higher accumulations in the wild genotype, suggesting the existence of distinct tolerance mechanisms. This study provides insights into the molecular mechanisms underlying insect resistance in the wild pigeonpea genotype. This information highlights the indispensable role of crop wild relatives as a source of crucial genetic resources that could be important in devising strategies for crop improvement with enhanced pest resistance.


Assuntos
Cajanus/genética , Cajanus/parasitologia , Resistência à Doença/genética , Mariposas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genótipo , Herbivoria , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Transcriptoma
3.
Physiol Plant ; 162(1): 13-34, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28466470

RESUMO

Osmotin is a key protein associated with abiotic and biotic stress response in plants. In this study, an osmotin from the resurrection plant Tripogon loliiformis (TlOsm) was characterized and functionally analyzed under abiotic stress conditions in T. loliiformis as well as in transgenic Nicotiana tabacum (tobacco) and Oryza sativa (rice) plants. Real-time PCR analysis on mixed elicitor cDNA libraries from T. loliiformis showed that TlOsm was upregulated a 1000-fold during the early stages of osmotic stresses (cold, drought, and salinity) in both shoots and roots but downregulated in shoots during heat stress. There was no change in TlOsm gene expression in roots of heat-stressed plants and during plant development. The plasma membrane localization of TlOsm was showed in fluorescent-tagged TlOsm tobacco plants using confocal laser scanning microscopic analysis. Transgenic rice plants expressing TlOsm were assessed for enhanced tolerance to salinity, drought and cold stresses. Constitutively expressed TlOsm in transgenic rice plants showed increased tolerance to cold, drought and salinity stress when compared with the wild-type and vector control counterparts. This was evidenced by maintained growth, retained higher water content and membrane integrity, and improved survival rate of TlOsm-expressing plants. The results thus indicate the involvement of TlOsm in plant response to multiple abiotic stresses, possibly through the signaling pathway, and highlight its potential applications for engineering crops with improved tolerance to cold, drought and salinity stress.


Assuntos
Adaptação Fisiológica , Craterostigma/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Membrana Celular/metabolismo , Temperatura Baixa , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas , Salinidade , Análise de Sequência de Proteína , Frações Subcelulares/metabolismo , Água
4.
Biotechnol Appl Biochem ; 65(2): 138-144, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28649761

RESUMO

As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks.


Assuntos
Arabidopsis/genética , Biocombustíveis , Ácidos Graxos/genética , Microbiologia Industrial/métodos , Óleos Industriais , Microalgas/genética , Saccharomyces cerevisiae/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Biocombustíveis/análise , Biocombustíveis/microbiologia , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Óleos Industriais/análise , Óleos Industriais/microbiologia , Engenharia Metabólica/métodos , Microalgas/enzimologia , Microalgas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
5.
PLoS Genet ; 11(12): e1005705, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633550

RESUMO

Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.


Assuntos
Autofagia/genética , Craterostigma/crescimento & desenvolvimento , Transcriptoma/genética , Trealose/metabolismo , Mudança Climática , Craterostigma/genética , Dessecação , Oryza , Folhas de Planta/genética , Folhas de Planta/metabolismo , Poaceae/genética , Estresse Fisiológico/genética , Trealose/genética , Água
6.
Planta ; 242(2): 407-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998524

RESUMO

MAIN CONCLUSION: Provides a first comprehensive review of integrated physiological and molecular aspects of desiccation tolerance Xerophyta viscosa. A synopsis of biotechnological studies being undertaken to improve drought tolerance in maize is given. Xerophyta viscosa (Baker) is a monocotyledonous resurrection plant from the family Vellociacea that occurs in summer-rainfall areas of South Africa, Lesotho and Swaziland. It inhabits rocky terrain in exposed grasslands and frequently experiences periods of water deficit. Being a resurrection plant it tolerates the loss of 95% of total cellular water, regaining full metabolic competency within 3 days of rehydration. In this paper, we review some of the molecular and physiological adaptations that occur during various stages of dehydration of X. viscosa, these being functionally grouped into early and late responses, which might be relevant to the attainment of desiccation tolerance. During early drying (to 55% RWC) photosynthesis is shut down, there is increased presence and activity of housekeeping antioxidants and a redirection of metabolism to the increased formation of sucrose and raffinose family oligosaccharides. Other metabolic shifts suggest water replacement in vacuoles proposed to facilitate mechanical stabilization. Some regulatory processes observed include increased presence of a linker histone H1 variant, a Type 2C protein phosphatase, a calmodulin- and an ERD15-like protein. During the late stages of drying (to 10% RWC) there was increased expression of several proteins involved in signal transduction, and retroelements speculated to be instrumental in gene silencing. There was induction of antioxidants not typically found in desiccation-sensitive systems, classical stress-associated proteins (HSP and LEAs), proteins involved in structural stabilization and those associated with changes in various metabolite pools during drying. Metabolites accumulated in this stage are proposed, inter alia, to facilitate subcellular stabilization by vitrification process which can include glass- and ionic liquid formation.


Assuntos
Adaptação Fisiológica , Craterostigma/fisiologia , Dessecação , Biotecnologia , Craterostigma/anatomia & histologia , Craterostigma/classificação , Craterostigma/genética , Estresse Oxidativo , Estresse Fisiológico
7.
Food Res Int ; 184: 114213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609212

RESUMO

Understanding the impact of minor components and the fatty acid profile of oil on oleogel properties is essential for optimizing their characteristics. Considering the scarcity of literature addressing this aspect, this study aimed to explore the correlation between these factors and the properties of beeswax and stearic acid-based oleogels derived from rice bran oil and sesame oil. Minor oil components were modified by stripping the oil, heating the oil with water, and adding ß-sitosterol. Oleogels were then prepared using a mixture of beeswax and stearic acid (3:1, w/w) at a concentration of 11.74 % (w/w). The properties of oils and oleogels were evaluated. The findings indicated that minor components and fatty acid composition of the oils substantially influence the oleogel properties. Removing minor components by stripping resulted in smaller and less uniformly distributed crystals and less oil binding capacity compared to the oleogels prepared from untreated oils. A moderate amount of minor components exhibited a significant influence on oleogel properties. The addition of ß-sitosterol did not show any influence on oleogel properties except for the oleogel made from untreated oil blend added with ß-sitosterol which had more uniform crystals in the microstructure and demonstrated better rheological stability when stored at 5 °C for two months. The oil composition did not show any influence on the thermal and molecular properties of oleogels. Consequently, the oleogel formulation derived from the untreated oil blend enriched with ß-sitosterol was identified as the optimal formula for subsequent development. The findings of this study suggest that the physical and mechanical properties as well as the oxidative stability of beeswax and stearic acid-based oleogels are significantly affected by the minor constituents and fatty acid composition of the oil. Moreover, it demonstrates that the properties of oleogels can be tailored by modifying oil composition by blending different oils.


Assuntos
Ácidos Graxos , Ácidos Esteáricos , Ceras , Óleo de Farelo de Arroz , Compostos Orgânicos
8.
ChemSusChem ; : e202301866, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568784

RESUMO

Lithium-ion batteries are commonly used for energy storage due to their long lifespan and high energy density, but the use of unsafe electrolytes poses significant health and safety concerns. An alternative source is necessary to maintain electrochemical efficacy. This research demonstrates new safe glyme-based electrolytes for silica/carbon (SiOx/C) nanocomposite derived from Australian rice husk (RH). The quality of SiOx/C was preserved by using deep eutectic solvent-based pre-treatment and single-step carbonization, which was confirmed through the X-ray analysis of the crystalline phase of silica. The electrochemical assessment of SiOx/C anode using various glyme-based electrolytes for LIBs was carried out. Among them, the resultant half cells based on diglyme electrolyte is superior to others with the first discharge capacity at 1274 mAh/g and a reversible discharge capacity of 759.7 mAh/g. Ex-situ SEM and Time-of-Flight Secondary Ion Mass Spectrometry (ToF- SIMS) analysis of the electrode indicated that diglyme not only improves the capacity but also sustains the electrode architecture for longer cycle life with more LiF-based components and also showed the absence of HF components. Importantly, the addition of fluoroethylene carbonate (FEC) additive enhanced the cycling stability. These results provide a new perspective on developing advanced SiOx/C anode using glyme electrolytes for Li-ion batteries.

9.
Sci Rep ; 13(1): 18553, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899486

RESUMO

Drought and extreme temperatures significantly limit chickpea productivity worldwide. The regulation of plant programmed cell death pathways is emerging as a key component of plant stress responses to maintain homeostasis at the cellular-level and a potential target for crop improvement against environmental stresses. Arabidopsis thaliana Bcl-2 associated athanogene 4 (AtBAG4) is a cytoprotective co-chaperone that is linked to plant responses to environmental stress. Here, we investigate whether exogenous expression of AtBAG4 impacts nodulation and nitrogen fixation. Transgenic chickpea lines expressing AtBAG4 are more drought tolerant and produce higher yields under drought stress. Furthermore, AtBAG4 expression supports higher nodulation, photosynthetic levels, nitrogen fixation and seed nitrogen content under well-watered conditions when the plants were inoculated with Mesorhizobium ciceri. Together, our findings illustrate the potential use of cytoprotective chaperones to improve crop performance at least in the greenhouse in future uncertain climates with little to no risk to yield under well-watered and water-deficient conditions.


Assuntos
Cicer , Cicer/genética , Chaperonas Moleculares/genética , Fixação de Nitrogênio , Estresse Fisiológico , Sementes/genética
10.
Sci Rep ; 13(1): 20613, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996547

RESUMO

Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.


Assuntos
Adaptação Fisiológica , Dessecação , Adaptação Fisiológica/genética , Poaceae/genética , Plantas/metabolismo , Água/metabolismo
11.
Nat Commun ; 14(1): 876, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797319

RESUMO

Grass pea (Lathyrus sativus L.) is a rich source of protein cultivated as an insurance crop in Ethiopia, Eritrea, India, Bangladesh, and Nepal. Its resilience to both drought and flooding makes it a promising crop for ensuring food security in a changing climate. The lack of genetic resources and the crop's association with the disease neurolathyrism have limited the cultivation of grass pea. Here, we present an annotated, long read-based assembly of the 6.5 Gbp L. sativus genome. Using this genome sequence, we have elucidated the biosynthetic pathway leading to the formation of the neurotoxin, ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP). The final reaction of the pathway depends on an interaction between L. sativus acyl-activating enzyme 3 (LsAAE3) and a BAHD-acyltransferase (LsBOS) that form a metabolon activated by CoA to produce ß-L-ODAP. This provides valuable insight into the best approaches for developing varieties which produce substantially less toxin.


Assuntos
Diamino Aminoácidos , Lathyrus , Lathyrus/genética , Lathyrus/metabolismo , Diamino Aminoácidos/metabolismo , Neurotoxinas/metabolismo , Genômica
12.
Sci Rep ; 11(1): 7099, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782503

RESUMO

Programmed cell death (PCD) is one of the most intensively researched fields in modern mammalian biology with roles in cancer, aging, diabetes and numerous neurodegenerative diseases. It is becoming increasingly clear that PCD also plays significant roles in plant defence and responses to the environment. Given their unique ability to tolerate desiccation (cells remain viable even after they've lost 95% of their water), resurrection plants make ideal models to study the regulation of plant PCD pathways. Previously, we showed that the Australian resurrection plant, Tripogon loliiformis, suppresses plant PCD, via trehalose-mediated activation of autophagy pathways, during drying. In the present study, we created a full-length T. loliiformis cDNA library, performed a large-scale Agrobacterium screen for improved salinity tolerance and identified Stachyose synthase (TlStach) as a potential candidate for improving stress tolerance. Tripogon loliiformis shoots accumulate stachyose synthase transcripts and stachyose during drying. Attempts to generate transgenic plants expressing TlStach failed and were consistent with previous reports in mammals that demonstrated stachyose-mediated induction of apoptosis. Using a combination of transcriptomics, metabolomics and cell death assays (TUNNEL and DNA laddering), we investigated whether stachyose induces apoptotic-like cell death in T. loliiformis. We show that stachyose triggers the formation of the hallmarks of plant apoptotic-like cell death in the desiccation sensitive Nicotiana benthamiana but not the resilient T. loliiformis. These findings suggest that T. loliiformis suppresses stachyose-mediated apoptotic-like cell death and provides insights on the role of sugar metabolism and plant PCD pathways. A better understanding of how resilient plants regulate sugar metabolism and PCD pathways may facilitate future targeting of plant metabolic pathways for increased stress tolerance.


Assuntos
Morte Celular/efeitos dos fármacos , Secas , Oligossacarídeos/farmacologia , Células Vegetais/efeitos dos fármacos , Plantas/efeitos dos fármacos , DNA Complementar/genética , Células Vegetais/metabolismo , Salinidade
13.
Front Plant Sci ; 12: 760407, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777441

RESUMO

Autophagy is a genetically regulated, eukaryotic cellular degradation system that sequestrates cytoplasmic materials in specialised vesicles, termed autophagosomes, for delivery and breakdown in the lysosome or vacuole. In plants, autophagy plays essential roles in development (e.g., senescence) and responses to abiotic (e.g., nutrient starvation, drought and oxidative stress) and biotic stresses (e.g., hypersensitive response). Initially, autophagy was considered a non-selective bulk degradation mechanism that provides energy and building blocks for homeostatic balance during stress. Recent studies, however, reveal that autophagy may be more subtle and selectively target ubiquitylated protein aggregates, protein complexes and even organelles for degradation to regulate vital cellular processes even during favourable conditions. The selective nature of autophagy lends itself to potential manipulation and exploitation as part of designer protein turnover machinery for the development of stress-tolerant and disease-resistant crops, crops with increased yield potential and agricultural efficiency and reduced post-harvest losses. Here, we discuss our current understanding of autophagy and speculate its potential manipulation for improved agricultural performance.

14.
Plants (Basel) ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34685853

RESUMO

Proline has been reported to play an important role in helping plants cope with several stresses, including salinity. This study investigates the relationship between proline accumulation and salt tolerance in an accession of Australian wild rice Oryza australiensis Domin using morphological, physiological, and molecular assessments. Seedlings of O. australiensis wild rice accession JC 2304 and two other cultivated rice Oryza sativa L. cultivars, Nipponbare (salt-sensitive), and Pokkali (salt-tolerant), were screened at 150 mM NaCl for 14 days. The results showed that O. australiensis was able to rapidly accumulate free proline and lower osmotic potential at a very early stage of salt stress compared to cultivated rice. The qRT-PCR result revealed that O. australiensis wild rice JC 2304 activated proline synthesis genes OsP5CS1, OsP5CS2, and OsP5CR and depressed the expression of proline degradation gene OsProDH as early as 1 h after exposure to salinity stress. Wild rice O. australiensis and Pokkali maintained their relative water content and cell membrane integrity during exposure to salinity stress, while the salt-sensitive Nipponbare failed to do so. An analysis of the sodium and potassium contents suggested that O. australiensis wild rice JC 2304 adapted to ionic stress caused by salinity by maintaining a low Na+ content and low Na+/K+ ratio in the shoots and roots. This demonstrates that O. australiensis wild rice may use a rapid accumulation of free proline as a strategy to cope with salinity stress.

15.
ACS Appl Mater Interfaces ; 12(43): 48518-48525, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33074665

RESUMO

Potassium-ion storage devices are attracting tremendous attention for wide-ranging applications on account of their low cost, fast charge transport in electrolytes, and large working voltage. However, developing cost-effective, high-energy electrodes with excellent structural stability to ensure long-term cycling performance is a major challenge. In this contribution, we have derived two different forms of carbon materials from almond shells using different chemical treatments. For instance, hard carbon (HC) and graphene-like activated carbon (AC) nanosheets are developed by employing simple carbonization and chemical activation routes, respectively. The resultant hard carbon (AS-HC) and activated carbon (AS-AC) exhibit outstanding electrochemical performance as negative and positive electrodes in a potassium-ion battery (KIB), respectively, through their tailor-made surface properties. These promising benefits pave a way to construct a biomass-derived carbon potassium-ion capacitor (KIC) by employing AS-HC as the negative electrode and AS-AC as the positive electrode in a K-based electrolyte. The as-fabricated KIC delivers a reasonable specific energy of 105 Wh/kg and excellent cycling life with negligible capacitance fading over 10 000 cycles. This "waste-to-wealth" approach can promote the development of sustainable KICs at low cost and inspire their use for fast-rate K-based energy storage applications.

16.
Trends Plant Sci ; 25(11): 1131-1140, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32467063

RESUMO

Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.


Assuntos
Apoptose , Plantas , Animais , Proteínas de Plantas
17.
Annu Rev Plant Biol ; 71: 435-460, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32040342

RESUMO

Desiccation of plants is often lethal but is tolerated by the majority of seeds and by vegetative tissues of only a small number of land plants. Desiccation tolerance is an ancient trait, lost from vegetative tissues following the appearance of tracheids but reappearing in several lineages when selection pressures favored its evolution. Cells of all desiccation-tolerant plants and seeds must possess a core set of mechanisms to protect them from desiccation- and rehydration-induced damage. This review explores how desiccation generates cell damage and how tolerant cells assuage the complex array of mechanical, structural, metabolic, and chemical stresses and survive.Likewise, the stress of rehydration requires appropriate mitigating cellular responses. We also explore what comparative genomics, both structural and responsive, have added to our understanding of cellular protection mechanisms induced by desiccation, and how vegetative desiccation tolerance circumvents destructive, stress-induced cell senescence.


Assuntos
Adaptação Fisiológica , Dessecação , Hidratação , Plantas , Sementes
18.
Front Plant Sci ; 10: 459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105716

RESUMO

Being sessile, plants must regulate energy balance, potentially via source-sink relations, to compromise growth with survival in stressful conditions. Crops are sensitive, possibly because they allocate their energy resources toward growth and yield rather than stress tolerance. In contrast, resurrection plants tightly regulate sugar metabolism and use a series of physiological adaptations to suppress cell death in their vegetative tissue to regain full metabolic capacity from a desiccated state within 72 h of watering. Previously, we showed that shoots of the resurrection plant Tripogon loliiformis, initiate autophagy upon dehydration as one strategy to reinstate homeostasis and suppress cell death. Here, we describe the relationship between energy status, sugar metabolism, trehalose-mediated activation of autophagy pathways and investigate whether shoots and roots utilize similar desiccation tolerance strategies. We show that despite containing high levels of trehalose, dehydrated Tripogon roots do not display elevated activation of autophagy pathways. Using targeted and non-targeted metabolomics, transmission electron microscopy (TEM) and transcriptomics we show that T. loliiformis engages a strategy similar to the long-term drought responses of sensitive plants and continues to use the roots as a sink even during sustained stress. Dehydrating T. loliiformis roots contained more sucrose and trehalose-6-phosphate compared to shoots at an equivalent water content. The increased resources in the roots provides sufficient energy to cope with stress and thus autophagy is not required. These results were confirmed by the absence of autophagosomes in roots by TEM. Upregulation of sweet genes in both shoots and roots show transcriptional regulation of sucrose translocation from leaves to roots and within roots during dehydration. Differences in the cell's metabolic status caused starkly different cell death responses between shoots and roots. These findings show how shoots and roots utilize different stress response strategies and may provide candidate targets that can be used as tools for the improvement of stress tolerance in crops.

19.
Front Plant Sci ; 10: 524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105725

RESUMO

Chickpea transformation is an important component for the genetic improvement of this crop, achieved through modern biotechnological approaches. However, recalcitrant tissue cultures and occasional chimerism, encountered during transformation, hinder the efficient generation of transgenic chickpeas. Two key parameters, namely micro-injury and light emitting diode (LED)-based lighting were used to increase transformation efficiency. Early PCR confirmation of positive in vitro transgenic shoots, together with efficient grafting and an extended acclimatization procedure contributed to the rapid generation of transgenic plants. High intensity LED light facilitate chickpea plants to complete their life cycle within 9 weeks thus enabling up to two generations of stable transgenic chickpea lines within 8 months. The method was validated with several genes from different sources, either as single or multi-gene cassettes. Stable transgenic chickpea lines containing GUS (uidA), stress tolerance (AtBAG4 and TlBAG), as well as Fe-biofortification (OsNAS2 and CaNAS2) genes have successfully been produced.

20.
Plant Sci ; 271: 62-66, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29650158

RESUMO

Plants constantly respond to threats in their environment by balancing their energy needs with growth, defence and survival. Some plants such as the small group of resilient angiosperms, the resurrection plants, do this better than most. Resurrection plants possess the capacity to tolerate desiccation in vegetative tissue and upon watering, regain full metabolic capacity within 72 h. Knowledge of how these plants survive such extremes has advanced in the last few decades, but the molecular mechanics remain elusive. Energy and water metabolism, cell cycle control, growth, senescence and cell death all play key roles in resurrection plant stress tolerance. Some resurrection plants suppress growth to improve energy efficiency and survival while sensitive species exhaust energy resources rapidly, have a diminished capacity to respond and die. How do the stress and energy metabolism responses employed by resurrection plants differ to those used by sensitive plants? In this perspective, we summarise recent findings defining the relationships between energy metabolism, stress tolerance and programmed cell death and speculate important roles for this regulation in resurrection plants. If we want to harness the strategies of resurrection plants for crop improvement, first we must understand the processes that underpin energy metabolism during growth and stress.


Assuntos
Metabolismo Energético , Plantas/metabolismo , Desidratação/metabolismo , Metabolismo Energético/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa