Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Genet Genomics ; 299(1): 3, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236481

RESUMO

Epidermal growth factor receptor (EGFR) has been shown to be overexpressed in human cancers due to mutation, amplification, and epigenetic hyperactivity, which leads to deregulated transcriptional mechanism. Among the eight different EGFR isoforms, the mechanism of regulation of full-length variant 1 is well-known, no studies have examined the function & factors regulating the expression of variant 8. This study aimed to understand the function of EGFR super-enhancer loci and its associated transcription factors regulating the expression of EGFR variant 8. Our study shows that overexpression of variant 8 and its transcription was more prevalent than variant 1 in many cancers and positively correlated with the EGFR-AS1 expression in oral cancer and HNSCC. Notably, individuals overexpressing variant 8 showed shorter overall survival and had a greater connection with other clinical traits than patients with overexpression of variant 1. In this study, TCGA enhancer RNA profiling on the constituent enhancer (CE1 and CE2) region revealed that the multiple enhancer RNAs formed from CE2 by employing CE1 as a promoter. Our bioinformatic analysis further supports the enrichment of enhancer RNA specific chromatin marks H3K27ac, H3K4me1, POL2 and H2AZ on CE2. GeneHancer and 3D chromatin capture analysis showed clustered interactions between CE1, CE2 loci and this interaction may regulates expression of both EGFR-eRNA and variant 8. Moreover, increased expression of SNAI2 and its close relationship to EGFR-AS1 and variant 8 suggest that SNAI2 could regulates variant 8 overexpression by building a MegaTrans complex with both EGFR-eRNA and EGFR-AS1. Our findings show that EGFR variant 8 and its transcriptional regulation & chromatin modification by eRNAs may provide a rationale for targeting RNA splicing in combination with targeted EGFR therapies in cancer.


Assuntos
RNAs Intensificadores , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Super Intensificadores , Receptores ErbB/genética , Cromatina/genética , Neoplasias de Cabeça e Pescoço/genética
2.
Mol Genet Genomics ; 297(4): 1123-1139, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35668131

RESUMO

Congenital heart disease (CHD) surges from fetal cardiac dysmorphogenesis and chiefly contributes to perinatal morbidity and cardiovascular disease mortality. A continual rise in prevalence and prerequisite postoperative disease management creates need for better understanding and new strategies to control the disease. The interaction between genetic and non-genetic factors roots the multifactorial status of this disease, which remains incompletely explored. The small non-coding microRNAs (miRs, miRNAs) regulate several biological processes via post-transcriptional regulation of gene expression. Abnormal expression of miRs in developing and adult heart is associated with anomalous cardiac cell differentiation, cardiac dysfunction, and cardiovascular diseases. Here, we attempt to discover the changes in cardiac miRNA transcriptome in CHD patients over those without CHD (non-CHD) and find its role in CHD through functional annotation. This study explores the miRNome in three most commonly occurring CHD subtypes, namely atrial septal defect (ASD), ventricular septal defect (VSD), and tetralogy of fallot (TOF). We found 295 dysregulated miRNAs through high-throughput sequencing of the cardiac tissues. The bioinformatically predicted targets of these differentially expressed miRs were functionally annotated to know they were entailed in cell signal regulatory pathways, profoundly responsible for cell proliferation, survival, angiogenesis, migration and cell cycle regulation. Selective miRs (hsa-miR-221-3p, hsa-miR-218-5p, hsa-miR-873-5p) whose expression was validated by qRT-PCR, have been reported for cardiogenesis, cardiomyocyte proliferation, cardioprotection and cardiac dysfunction. These results indicate that the altered miRNome to be responsible for the disease status in CHD patients. Our data expand the existing knowledge on the epigenetic changes in CHD. In future, characterization of these cardiac-specific miRs will add huge potential to understand cardiac development, function, and molecular pathogenesis of heart diseases with a prospect of epigenetic manipulation for cardiac repair.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Adulto , Feminino , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Tetralogia de Fallot/genética
3.
J Hum Genet ; 67(6): 323-329, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35017684

RESUMO

Endometriosis is a benign gynecologic condition, acting as a precursor of certain histological subtypes of ovarian cancers. The epithelial cells of endometriotic tissues and normal uterine endometrium accumulated somatic mutations in cancer-associated genes such as phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and Kirsten rat sarcoma (KRAS) proto-oncogene. To determine the genomic characteristic of endometriotic epithelial cells and normal uterine endometrium and to identify the predominant mutational process acting on them, we studied the somatic mutation profiles obtained from whole exome sequencing of 14 endometriotic epithelium and 11 normal uterine endometrium tissues and classified them into mutational signatures. We observed that single base substitutions 2/13 (SBS), attributed to Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit (APOBEC) induced mutagenesis, were significant in endometriotic tissues, but not in the normal uterine endometrium. Additionally, the larger number and wider allele frequency distribution of APOBEC signature mutations, compared to cancer-associated driver mutations in endometriotic epithelium suggested APOBEC mutagenesis as an important source of mutational burden and heterogeneity in endometriosis. Further, the relative risk of enriched APOBEC signature mutations was higher in endometriosis patients who were carriers of APOBEC3A/3B germline deletion, a common polymorphism in East Asians which involves the complete loss of APOBEC3B coding region. Our results illustrate the significance of APOBEC induced mutagenesis in driving the genomic heterogeneity of endometriosis.


Assuntos
Endometriose , Neoplasias Ovarianas , Citidina Desaminase/genética , Endometriose/genética , Endometriose/patologia , Endométrio/patologia , Feminino , Genômica , Humanos , Antígenos de Histocompatibilidade Menor , Mutagênese , Mutação , Neoplasias Ovarianas/genética , Proteínas
4.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232425

RESUMO

Cowden syndrome (CS) is a rare autosomal dominant disorder associated with multiple hamartomatous and neoplastic lesions in various organs. Most CS patients have been found to have germline mutations in the PTEN tumor suppressor. In the present study, we investigated the causative gene of CS in a family of PTEN (phosphatase and tensin homolog deleted on chromosome 10) -negative CS patients. Whole exome sequencing analysis revealed AMBRA1 (Autophagy and Beclin 1 Regulator 1) as a novel candidate gene harboring two germline variants: p.Gln30Arg (Q30R) and p.Arg1195Ser (R1195S). AMBRA1 is a key regulator of the autophagy signaling network and a tumor suppressor. To functionally validate the role of AMBRA1 in the clinical manifestations of CS, we generated AMBRA1 depletion and Q30R mutation in hTERT-RPE1 (humanTelomerase Reverse Transcriptase-immortalized Retinal Pigmented Epithelial cells) using the CRISPR-Cas9 gene editing system. We observed that both AMBRA1-depleted and mutant cells showed accumulation in the S phase, leading to hyperproliferation, which is a characteristic of hamartomatous lesions. Specifically, the AMBRA1 Q30R mutation disturbed the G1/S transition of cells, leading to continuous mitotic entry of mutant cells, irrespective of the extracellular condition. From our analysis of primary ciliogenesis in these cells, we speculated that the mitotic entry of AMBRA1 Q30R mutants could be due to non-functional primary cilia that lead to impaired processing of extracellular sensory signals. Additionally, we observed a situs inversus phenotype in ambra1-depleted zebrafish, a developmental abnormality resulting from dysregulated primary ciliogenesis. Taken together, we established that the AMBRA1 Q30R mutation that we observed in CS patients might play an important role in inducing the hyperproliferative potential of cells through regulating primary ciliogenesis.


Assuntos
Síndrome do Hamartoma Múltiplo , Animais , Proteína Beclina-1/genética , Mutação em Linhagem Germinativa , Síndrome do Hamartoma Múltiplo/complicações , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Mutação , PTEN Fosfo-Hidrolase/genética , DNA Polimerase Dirigida por RNA/genética , Tensinas/genética , Peixe-Zebra/genética
5.
Semin Cancer Biol ; 59: 80-91, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31173856

RESUMO

Akt is a serine/threonine kinase and it participates in the key role of the PI3K signaling pathway. The Akt can be activated by a wide range of growth signals and the biochemical mechanisms leading to Akt activation are well defined. Once activated, Akt modulates the function of many downstream proteins involved in cellular survival, proliferation, migration, metabolism, and angiogenesis. The Akt is a central node of many signaling pathways and it is frequently deregulated in many types of human cancers. In this review, we provide an overview of Akt function and its role in the hallmarks of human cancer. We also discussed various mechanisms of Akt dysregulation in cancers, including epigenetic modifications like methylation, post-transcriptional non-coding RNAs-mediated regulation, and the overexpression and mutation.


Assuntos
Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Ativação Enzimática , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
6.
Tumour Biol ; 39(4): 1010428317698366, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28443494

RESUMO

Oral squamous cell carcinoma is the most aggressive cancer that is associated with high recurrence, metastasis, and poor treatment outcome. Dysregulation of long non-coding RNAs has been shown to promote tumor growth and metastasis in several cancers. In this study, we investigated the expression of 11 selected long non-coding RNAs that are associated with cell proliferation, metastasis, and tumor suppression in oral squamous cell carcinomas and normal tissues by quantitative real-time polymerase chain reaction. Out of the 11 long non-coding RNAs profiled, 9 were significantly overexpressed in tumors with tobacco chewing history. Moreover, the long non-coding RNA profile was similar to the head and neck cancer datasets of The Cancer Genome Atlas database. Linc-RoR, a regulator of reprogramming, implicated in tumorigenesis was found to be overexpressed in undifferentiated tumors and showed strong association with tumor recurrence and poor therapeutic response. In oral squamous cell carcinomas, for the first time, we observed linc-RoR overexpression, downregulation of miR-145-5p, and overexpression of c-Myc, Klf4, Oct4, and Sox2, suggesting the existence of linc-RoR-mediated competing endogenous RNA network in undifferentiated tumors. Taken together, this study demonstrated the association of linc-RoR overexpression in undifferentiated oral tumors and its prognostic value to predict the therapeutic response.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Bucais/genética , RNA Longo não Codificante/genética , Uso de Tabaco/efeitos adversos , Biomarcadores Tumorais/biossíntese , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/patologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Prognóstico , RNA Longo não Codificante/biossíntese
7.
J Cell Physiol ; 231(7): 1424-31, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26620726

RESUMO

Oral squamous cell carcinoma (OSCC) of the head and neck is one of the six most common cancers in the world. OSCC remains the most common cause of cancer deaths in Asian countries. Conventional treatments for OSCC have not improved the overall 5 years survival and therefore alternative therapeutic targets are often sought. Ras is one of the most frequently deregulated oncogenes in oral cancer. Direct targeting the ras has proven unrealistic and hence, exploring and understanding alternative pathways and/or molecules which regulate ras and its signaling that could pave the way for novel molecular targets and therapy for oral cancer. Recently, microRNAs (miRNAs) have been reported to regulate ras oncogenes in human cancers. In this article, we address the microRNA-mediated regulation of the ras oncogenes in oral cancer. We describe extensively the tumor suppressive and oncogenic roles of miRNAs in regulation of ras oncogenes in OSCC. We also discuss the role of miRNA-mediated ras regulation in therapeutic determination of oral cancer. Complete understanding of the miRNA regulation of ras oncogenes in oral cancer may facilitate to plan better strategies for diagnosis, molecular therapeutic targeting and the overall prognosis of this common and deadly cancer.


Assuntos
Carcinoma de Células Escamosas/genética , MicroRNAs/genética , Neoplasias Bucais/genética , Proteína Oncogênica p21(ras)/genética , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Proteína Oncogênica p21(ras)/biossíntese , Prognóstico , Transdução de Sinais
8.
Mol Cancer ; 15: 28, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056547

RESUMO

BACKGROUND: The advantages and utility of microRNAs (miRNAs) as diagnostic and prognostic cancer markers is at the vanguard in recent years. In this study, we attempted to identify and validate the differential expression of miRNAs in oral squamous cell carcinoma (OSCC), to correlate their expression with the clinico-pathological profile of tumours and to identify the signaling pathways through which the aberrantly expressed miRNAs effect tumourigenesis. METHODS: miRCURY LNA™ array with probes specific to 1168 miRNAs and TaqMan assays specific for 10 miRNAs was employed to evaluate and validate miRNA expression in a discovery cohort (n = 29) and validation cohort (n = 61) of primary OSCC tissue specimens, respectively. A computational pipeline with sequential integration of data from miRTarBase, CytoScape, UniProtKB and DIANA-miRPath was utilized to map the target genes of deregulated miRNAs and associated molecular pathways. RESULTS: Microarray profiling identified 46 miRNAs that were differentially expressed in OSCC. Unsupervised clustering demonstrated a high degree of molecular heterogeneity across the tumour samples as the clusters did not represent any of their clinico-pathological characteristics. The differential expression of 10 miRNAs were validated by RT-qPCR (let-7a, let-7d, let-7f and miR-16 were downregulated while miR-29b, miR-142-3p, miR-144, miR-203, and miR-223 were upregulated in OSCC; the expression of miR-1275 was variable in tumours, with high levels associated to regional lymph node invasion; additionally, miR-223 exhibited an association with advanced tumour stage/size). In silico analyses of the experimentally confirmed target genes of miRNAs revamp the relationship of upregulated miRNAs with tumour suppressor genes and of downregulated miRNAs with oncogenes. Further, the differentially expressed miRNAs may play a role by simultaneously activating genes of PI3K/Akt signaling on one hand and by repressing genes of p53 signaling pathway on the other. CONCLUSIONS: The identified differentially expressed miRNAs and signaling pathways deregulated in OSCC have implications for the development of novel therapeutic strategies. To the best of our knowledge, this is the first report to show the association of miR-1275 with nodal invasion and the upregulation of miR-144 in OSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Bucais/genética , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Análise por Conglomerados , Regulação para Baixo/genética , Feminino , Heterogeneidade Genética , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Regulação para Cima/genética
9.
Tumour Biol ; 37(9): 11983-11990, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27155849

RESUMO

Breast cancer and cervical cancer are the leading causes of death in women worldwide as well as in India, whilst oral cancer is the top most common cancer among Asian especially in Indian men in terms of both incidence and mortality rate. Genetic factors determining the predisposition to cancer are being explored to identify the signature genetic variations associated with these cancers. Recently, a germline deletion polymorphism in APOBEC3 gene cluster which completely deletes APOBEC3B coding region has been studied for its association with cancer risk. We screened the germline deletion polymorphism in 409 cancer patients (224 breast cancer, 88 cervical cancer and 97 oral cancer samples), 478 controls and 239 cervical cancer tissue DNAs of South Indian origin. The results suggest that the APOBEC3A/3B deletion polymorphism is not significantly associated with cancer risk in our study population (OR 0.739, 95 % CI, p value 0.91457). Considering the viral restriction property of APOBEC3s, we also screened cervical cancer tissue DNAs for the human papilloma virus infection. We observed a gradual increase in the frequency of HPV16 infection from AA/BB cases (66.86 %) to AA/-- cases (71.43) which signifies the impact of this deletion polymorphism in HPV infection. In addition, we performed in silico analysis to understand the effect of this polymorphism on miRNA regulation of the APOBEC3A/3B fusion transcript. Only 8 APOBEC3B targeting miRNAs were observed to regulate the fusion transcript of which miR-34b-3p and miR-138-5p were found to be frequently downregulated in cancers suggesting miRNA-mediated deregulation of APOBEC3A expression in cancer patients harbouring this particular deletion polymorphism.


Assuntos
Neoplasias da Mama/genética , Citidina Desaminase/genética , MicroRNAs/fisiologia , Antígenos de Histocompatibilidade Menor/genética , Neoplasias Bucais/genética , Proteínas/genética , Deleção de Sequência , Neoplasias do Colo do Útero/genética , Neoplasias da Mama/etiologia , Feminino , Humanos , Neoplasias Bucais/etiologia , Infecções por Papillomavirus/complicações , Polimorfismo Genético , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/virologia
10.
Tumour Biol ; 37(6): 7907-13, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26700669

RESUMO

Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics. We found relatively high frequency of TERT hot spot mutations in both cervical [21.4 % (30/140)] and oral [31.7 % (13/41)] squamous cell carcinomas. In cervical cancer, TERT promoter mutations were more prevalent (25 %) in human papilloma virus (HPV)-negative cases compared to HPV-positive cases (20.6 %), and both TERT promoter mutation and HPV infection were more commonly observed in advanced stage tumors (77 %). Similarly, the poor and moderately differentiated tumors of the uterine cervix had both the TERT hot spot mutations and HPV (16 and 18) at higher frequency (95.7 %). Interestingly, we observed eight homozygous mutations (six 228TT and two 250TT) only in cervical tumors, and all of them were found to be positive for high-risk HPV. To the best of our knowledge, this is the first study from India reporting high prevalence of TERT promoter mutations in primary tumors of the uterine cervix and oral cavity. Our results suggest that TERT reactivation through promoter mutation either alone or in association with the HPV oncogenes (E6 and E7) could play an important role in the carcinogenesis of cervical and oral cancers.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Bucais/genética , Telomerase/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/patologia , Mutação , Papillomaviridae/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
11.
Cell Tissue Res ; 358(3): 833-41, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25260909

RESUMO

Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Pele/metabolismo , Pele/patologia , Cicatrização , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Sequência de Aminoácidos , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/genética , Doença Crônica , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Exsudatos e Transudatos/metabolismo , Feminino , Gelatina/metabolismo , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tripsina/metabolismo , Regulação para Cima/genética , Cicatrização/genética , Ferimentos e Lesões/genética
12.
Biochem Pharmacol ; 201: 115090, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577014

RESUMO

Glioma is the most common intracranial tumor with poor treatment outcomes and has high morbidity and mortality. Various studies on genomic analyses of glioma found a variety of deregulated genes with somatic mutations including TERT, TP53, IDH1, ATRX, TTN, etc. The genetic alterations in the key genes have been demonstrated to play a crucial role in gliomagenesis by modulating important signaling pathways that alter the fundamental intracellular functions such as DNA damage and repair, cell proliferation, metabolism, growth, wound healing, motility, etc. The SPRK1, MMP2, MMP9, AKT, mTOR, etc., genes, and noncoding RNAs (miRNAs, lncRNAs, circRNAs, etc.) were shown mostly to be implicated in the metastases of glioma. Despite advances in the current treatment strategies, a low-grade glioma is a uniformly fatal disease with overall median survival of âˆ¼ 5-7 years while the patients bearing high-grade tumors display poorer median survival of âˆ¼ 9-10 months mainly due to aggressive metastasis and therapeutic resistance. This review discusses the spectrum of deregulated genes, molecular and cellular mechanisms of metastasis, recurrence, and its management, the plausible causes for the development of therapy resistance, current treatment options, and the recent trends in malignant gliomas. Understanding the pathogenic mechanisms and advances in molecular genetics would aid in the novel diagnosis, prognosis, and translation of pathogenesis-based treatment opportunities which could pave the way for precision medicine in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Resistência a Medicamentos , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Mutação , Prognóstico
13.
Arch Oral Biol ; 139: 105428, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35461069

RESUMO

OBJECTIVE: The objective of this study is to identify the association between linc-ROR genetic variants and oral squamous cell carcinoma tumorigenesis. DESIGN: Four genetic variants of linc-ROR (rs6420545, rs4801078, rs1942348, and rs9636089) were analyzed in 178 OSCCs and 191 controls of the South Indian population by PCR amplification followed by restriction digestion. In addition, we examined whether these variants alter linc-ROR expression levels and the progression of OSCC. RESULTS: The frequency of linc-ROR rs6420545 and rs4801078 genotypes were significantly associated with advanced tumor grade (>2) (p = 0.002 and p = 0.048), and nodal metastasis (p = 0.001 and p = 0.019), respectively. We observed a significant association of rs6420545 specifically in the over-dominant model [OR 1.77 (95%CI; 1.17-2.68); p = 0.006] and rs9636089 in dominant model [OR 2.17 (95%CI; 1.06 - 4.46); p = 0.03], and allelic model [OR 2.26 (95%CI; 1.13 - 4.53) p = 0.02], respectively. Further, significant upregulation of linc-ROR (p = 0.005) was observed in our cohort, consistent with the HNSCC TCGA dataset (p < 0.0001). CONCLUSIONS: Our findings suggest that the linc-ROR genetic variants could contribute to the metastasis and progression mainly in the late event of tumorigenesis of OSCCs and these variants could be useful in the precision therapeutic management of this cancer particularly in prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , RNA Longo não Codificante , Carcinogênese , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Bucais/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
14.
Pharmacogenomics ; 23(12): 683-694, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35968761

RESUMO

Introduction: Atorvastatin exhibits wide interindividual variability in treatment response, limiting the drug efficacy in coronary artery disease patients. Aim: To study the effect of genetic variants involved in atorvastatin transport/metabolism and correlate their lipid-lowering efficacy. Materials & methods: Genotyping was performed using 5'-hydrolysis probe method (n = 412), and the study evaluated the treatment response in 86 patients. Results: Significant reduction in total cholesterol and low-density lipoprotein cholesterol (LDL-C) were observed in SLCO1B1-rs4149056, rs4363657 and ABCB1-rs1045642 genotypes. The combined genotypes of ABCB1 and SLCO1B1 showed a strong synergistic effect in reducing the total cholesterol and LDL-C. Diabetes and smoking were observed to influence the LDL-C reduction. Conclusion: The genetic variants of SLCO1B1 and ABCB1 predict the lipid-lowering efficacy of atorvastatin, and this may be useful in genotype-guided statin therapy for coronary artery disease patients.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Atorvastatina , Doença da Artéria Coronariana , Inibidores de Hidroximetilglutaril-CoA Redutases , Transportador 1 de Ânion Orgânico Específico do Fígado , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Atorvastatina/uso terapêutico , LDL-Colesterol/genética , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/genética , Genótipo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Polimorfismo de Nucleotídeo Único
15.
Cancer Genet ; 264-265: 100-108, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568000

RESUMO

INTRODUCTION: Cervical cancer is the second most common cancer in India. The phosphatidylinositol-3 kinase (PI3K) signaling is one of the most commonly activated pathways in cancer and comprises key molecules commonly targeted in cancer therapy. This study analyzed six PI3K pathway gene mutations. METHODS: We carried out targeted next-generation sequencing of six PI3K pathway genes (PIK3CA, PIK3R1, PTEN, AKT1, TSC2, and mTOR) in a total of 93 South Indian cervical cancer samples and confirmed them by sanger sequencing. RESULTS: The PI3K pathway gene mutations were observed in 54.8% (51/93) of the tumors and PIK3CA was the most mutated (34.4%, 32/93), followed by TSC2 (18.3%, 17/93), and PIK3R1 (14%, 13/93). The PIK3CA hotspot mutations E542K and E545K observed in this study were likely to disrupt the p110α-p85α interaction that could result in the PI3K pathway activation. We also found a few novel mutations in PIK3R1, PTEN, AKT1, TSC2, and mTOR genes while some of the tumors harbored multiple mutations in the genes of the PI3K pathway. The majority of the tumors were positive for high-risk HPV16/18 (60.7%). CONCLUSIONS: The high incidence of the PI3K pathway gene mutations observed in this study could be exploited for the therapeutic management of cervical cancers.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias do Colo do Útero , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 18/metabolismo , Humanos , Incidência , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/genética
17.
Cancer Lett ; 496: 104-116, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038491

RESUMO

Cervical cancer is one of the foremost common cancers in women. Human papillomavirus (HPV) infection remains a major risk factor of cervical cancer. In addition, numerous other genetic and epigenetic factors also are involved in the underlying pathogenesis of cervical cancer. Recently, it has been reported that apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC), DNA-editing protein plays an important role in the molecular pathogenesis of cancer. Particularly, the APOBEC3 family was shown to induce tumor mutations by aberrant DNA editing mechanism. In general, APOBEC3 enzymes play a pivotal role in the deamination of cytidine to uridine in DNA and RNA to control diverse biological processes such as regulation of protein expression, innate immunity, and embryonic development. Innate antiviral activity of the APOBEC3 family members restrict retroviruses, endogenous retro-element, and DNA viruses including the HPV that is the leading risk factor for cervical cancer. This review briefly describes the pathogenesis of cervical cancer and discusses in detail the recent findings on the role of APOBEC in the molecular pathogenesis of cervical cancer.


Assuntos
Desaminases APOBEC/metabolismo , Imunidade Inata/imunologia , Neoplasias do Colo do Útero/patologia , Animais , Feminino , Humanos , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/imunologia
18.
Sci Rep ; 11(1): 8808, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888812

RESUMO

Tyrosine kinase inhibitor is an effective chemo-therapeutic drug against tumors with deregulated EGFR pathway. Recently, a genetic variant rs10251977 (G>A) in exon 20 of EGFR reported to act as a prognostic marker for HNSCC. Genotyping of this polymorphism in oral cancer patients showed a similar frequency in cases and controls. EGFR-AS1 expressed significantly high level in tumors and EGFR-A isoform expression showed significant positive correlation (r = 0.6464, p < 0.0001) with reference to EGFR-AS1 expression levels, consistent with larger TCGA HNSCC tumor dataset. Our bioinformatic analysis showed enrichment of alternative splicing marks H3K36me3 and presence of intronic polyA sites spanning around exon 15a and 15b of EGFR facilitates skipping of exon 15b, thereby promoting the splicing of EGFR-A isoform. In addition, high level expression of PTBP1 and its binding site in EGFR and EGFR-AS1 enhances the expression of EGFR-A isoform (r = 0.7404, p < 0.0001) suggesting that EGFR-AS1 expression modulates the EGFR-A and D isoforms through alternative splicing. In addition, this polymorphism creates a binding site for miR-891b in EGFR-AS1 and may negatively regulate the EGFR-A. Collectively, our results suggested the presence of genetic variant in EGFR-AS1 modulates the expression of EGFR-D and A isoforms.


Assuntos
Elementos Antissenso (Genética)/genética , Variação Genética , Isoformas de Proteínas/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Genótipo , Humanos , Neoplasias Bucais/genética
19.
Mol Clin Oncol ; 12(5): 485-494, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32257207

RESUMO

A single nucleotide polymorphism (SNP) rs2853669 (A>G) in the telomerase reverse transcriptase (TERT) promoter has recently been reported in chr5:1,295,349 T>C (T349C), and was shown to be associated with increased cancer risk and poor survival in a specific population. However, at present, the role of this particular SNP with TERT promoter driver mutations and its genetic association with human papilloma virus (HPV) in patients with cervical cancer has not been determined. In the present study, the genetic association of the functional SNP rs2853669 in the presence/absence of TERT promoter hotspot mutations and HPV in patients with cervical cancer of South Indian origin was evaluated. To understand and compare the frequency of the variant allele and its risk association in different cancer types of various populations, the SNP was genotyped in 257 cervical cancer samples and 295 controls, and its associations with TERT promoter hotspot mutations and HPV were analyzed. Furthermore, an extensive search of previously published articles in PubMed, Embase and Web of Science was conducted; a meta-analysis was carried out to elucidate the association of the SNP with different cancer types in global populations. The SNP analysis showed significantly high frequency (41%) of homozygous variant allele rs2853669 (GG) in patients with cervical cancer compared with control samples [Recessive allele model odds ratio (OR)=1.71; 95% CI=1.20-2.43; P=0.003]. No significant interaction was observed between the TERT SNP rs2853669 and HPV status as well as other hotspot TERT promoter (C228T and C250T) mutations determined in our previous study. In addition, the overall meta-analysis revealed a significant association of the SNP rs2853669 with other cancer types in different ethnic populations (OR=1.09; 95% CI=1.03-1.16; P=0.004). The present results suggested that the TERT SNP rs2853669 could play an important role in the risk of cervical cancer in a South Indian population.

20.
Int J Oncol ; 32(1): 101-11, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18097548

RESUMO

Phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases that regulate cellular activities such as proliferation, survival, motility and morphology. Recent studies reported that the p110alpha (PIK3CA), catalytic subunit of PI3-kinase is somatically mutated in human cancers. Hot- spot mutations (E542K, E545K and H1047R) are reported to have higher oncogenic potential. Although PIK3CA mutations were reported in head and neck squamous cell carcinomas (HNSCC) of limited ethnicity, the functional consequences of HNSCC-associated PIK3CA mutations have not been examined. Status of PI3K signaling related genes (PTEN-RAS-EGFR) in the presence of PIK3CA mutation have not been reported. In this study, we analyzed exons 9 and 20 of PIK3CA in 54 samples, including 17 HNSCC cell lines, 19 Indian and 18 Vietnamese primary tumors. We found mutations in 29.4% (5/17) of HNSCC cell lines, 10.5% (2/19) of Indian tumors and no mutation (0/18) in Vietnamese tumors. Two homozygous PIK3CA mutations were found in cell lines and a novel insertion mutation with oncogenicity in Indian tumor. Analysis of PI3K signaling related genes showed that PIK3CA and PTEN mutations were mutually exclusive, though PTEN mutation is uncommon in HNSCC. However, PIK3CA mutation coexisted with H-RAS mutation. Furthermore, PIK3CA mutations were mutually exclusive to EGFR amplification. All the 5 mutants that we found in HNSCC, showed increased PI3 kinase activities, followed by growth factor independent higher colony forming efficiency, changes in morphology, higher rates of migration and invasion compared with PIK3CA wild-type. Our study is the first to examine the oncogenic potential of PIK3CA mutants associated with HNSCC and report on PIK3CA mutations in Indian and Vietnamese ethnicity. These results suggest that PIK3CA mutations in HNSCC are likely to be oncogenic and may significantly contribute to HNSCC carcinogenesis and pave attractive target for therapeutic prevention.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Classe I de Fosfatidilinositol 3-Quinases , Genes p53 , Genes ras , Neoplasias de Cabeça e Pescoço/patologia , Humanos , PTEN Fosfo-Hidrolase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa