Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Hepatology ; 75(6): 1461-1470, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773664

RESUMO

BACKGROUND AND AIMS: Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS: Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS: 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.


Assuntos
Degeneração Hepatolenticular , Degeneração Hepatolenticular/diagnóstico por imagem , Degeneração Hepatolenticular/genética , Heterozigoto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons
2.
J Hepatol ; 74(1): 58-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32717289

RESUMO

BACKGROUND & AIMS: Obeticholic acid (OCA) is an agonist of the nuclear bile acid receptor farnesoid X receptor, which regulates hepatic bile acid metabolism. We tested whether OCA treatment would influence hepatic transport of conjugated bile acids in patients with primary biliary cholangitis (PBC) who responded inadequately to treatment with ursodeoxycholic acid (UDCA). METHODS: Eight UDCA-treated patients with PBC with alkaline phosphatase ≥1.5 times the upper limit of normal range participated in a double-blind, placebo-controlled study. While continuing on UDCA, the patients were randomised to two 3-month crossover treatment periods with placebo and OCA, in random order, separated by a 1-month washout period without study treatment. After each of the two treatment periods, we determined rate constants for transport of conjugated bile acids between blood, hepatocytes, biliary canaliculi, and bile ducts by positron emission tomography of the liver using the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar). The hepatic blood perfusion was measured using infusion of indocyanine green and Fick's principle. RESULTS: Compared with placebo, OCA increased hepatic blood perfusion by a median of 11% (p = 0.045), the unidirectional uptake clearance of 11C-CSar from blood into hepatocytes by a median of 11% (p = 0.01), and the rate constant for secretion of 11C-CSar from hepatocytes into biliary canaliculi by a median of 73% (p = 0.03). This resulted in an OCA-induced decrease in the hepatocyte residence time of 11C-CSar by a median of 30% (p = 0.01), from group median 11 min to 8 min. CONCLUSIONS: This study of UDCA-treated patients with PBC showed that, compared with placebo, OCA increased the hepatic transport of the conjugated bile acid tracer 11C-CSar, and thus endogenous conjugated bile acids, from hepatocytes into biliary canaliculi. As a result, OCA reduced the time hepatocytes are exposed to potentially cytotoxic bile acids. LAY SUMMARY: Primary biliary cholangitis is a chronic liver disease in which the small bile ducts are progressively destroyed. We tested whether the treatment with obeticholic acid (OCA) would improve liver excretion of bile acids compared with placebo in 8 patients with primary biliary cholangitis. A special scanning technique (PET scan) showed that OCA increased the transport of bile acids from blood to bile. OCA thereby reduced the time that potentially toxic bile acids reside in the liver by approximately one-third.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Ácido Quenodesoxicólico/análogos & derivados , Cirrose Hepática Biliar , Tomografia por Emissão de Pósitrons/métodos , Receptores Citoplasmáticos e Nucleares/agonistas , Idoso , Fosfatase Alcalina/sangue , Ductos Biliares Intra-Hepáticos/diagnóstico por imagem , Ductos Biliares Intra-Hepáticos/fisiopatologia , Transporte Biológico/efeitos dos fármacos , Ácido Quenodesoxicólico/administração & dosagem , Ácido Quenodesoxicólico/farmacocinética , Método Duplo-Cego , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/farmacocinética , Fármacos Gastrointestinais/farmacologia , Hepatócitos/patologia , Humanos , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/metabolismo , Pessoa de Meia-Idade , Resultado do Tratamento , Ácido Ursodesoxicólico/administração & dosagem , Ácido Ursodesoxicólico/farmacocinética
3.
Breast Cancer Res Treat ; 181(1): 107-113, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32240455

RESUMO

PURPOSE: Epidemiological studies and randomized clinical trials suggest that the antidiabetic drug, metformin, may have anti-neoplastic effects. The mechanism that mediates these beneficial effects has been suggested to involve direct action on cancer cells, but this will require distribution of metformin in tumor tissue. The present study was designed to investigate metformin distribution in vivo in breast and liver tissue in breast cancer patients. METHODS: Seven patients recently diagnosed with ductal carcinoma were recruited. Using PET/CT, tissue distribution of metformin was determined in vivo for 90 min after injection of a carbon-11-labeled metformin tracer. After surgery, tumor tissue was investigated for gene expression levels of metformin transporter proteins. RESULTS: Tumor tissue displayed a distinct uptake of metformin compared to normal breast tissue AUC0-90 min (75.4 ± 5.5 vs 42.3 ± 6.3) g/ml*min (p = 0.01). Maximal concentration in tumor was at 1 min where it reached approximately 30% of the activity in the liver. The metformin transporter protein with the highest gene expression in tumor tissue was multidrug and toxin extrusion 1 (MATE 1) followed by plasma membrane monoamine transporter (PMAT). CONCLUSION: This study confirms that metformin is transported into tumor tissue in women with breast cancer. This finding support that metformin may have direct anti-neoplastic effects on tumor cells in breast cancer patients. However, distribution of metformin in tumor tissue is markedly lower than in liver, an established metformin target tissue.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Radioisótopos de Carbono/farmacocinética , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Pessoa de Meia-Idade , Prognóstico , Distribuição Tecidual
4.
Drug Metab Dispos ; 48(11): 1210-1216, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32843330

RESUMO

Predicting transporter-mediated in vivo hepatic drug clearance (CL) from in vitro data (IVIVE) is important in drug development to estimate first-in-human dose and the impact of drug interactions and pharmacogenetics on hepatic drug CL. For IVIVE, one can use human hepatocytes and the traditional milligrams of protein content per gram of liver tissue (MGPGL) approach. However, this approach has been found to consistently underpredict the observed in vivo hepatic drug CL. Therefore, we hypothesized that using transporter-expressing cells and the relative expression factor (REF), determined using targeted quantitative proteomics, will accurately predict in vivo hepatic CL of drugs. We have successfully tested this hypothesis in rats with rosuvastatin, which is transported by hepatic Organic anion transporting polypeptides (OATPs). Here, we tested this hypothesis for another drug and another transporter; namely, organic cation transporter (OCT)1-mediated hepatic distributional CL of metformin. First, we estimated the in vivo metformin hepatic sinusoidal uptake CL (CLh,s,in) of metformin by reanalysis of previously published human positron emission tomography imaging data. Next, using the REF approach, we predicted the in vivo metformin CLh,s,in using OCT1-transporter-expressing HEK293 cells or plated human hepatocytes. Finally, we compared this REF-based prediction with that using the MGPGL approach. The REF approach accurately predicted the in vivo metformin hepatic CLh,s,in, whereas the MGPGL approach considerably underpredicted the in vivo metformin CLh,s,in Based on these and previously published data, the REF approach appears to be superior to the MGPGL approach for a diverse set of drugs transported by different transporters. SIGNIFICANCE STATEMENT: This study is the first to use organic cation transporter 1-expressing cells and plated hepatocytes to compare proteomics-informed REF approach with the traditional MGPGL approach to predict hepatic uptake CL of metformin in humans. The proteomics-informed REF approach, which corrected for plasma membrane abundance, accurately predicted the positron emission tomography-imaged metformin hepatic uptake CL, whereas the MGPGL approach consistently underpredicted this CL.


Assuntos
Fígado/metabolismo , Metformina/farmacocinética , Modelos Biológicos , Transportador 1 de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons , Membrana Celular/metabolismo , Ensaios Clínicos Fase I como Assunto , Feminino , Células HEK293 , Eliminação Hepatobiliar , Hepatócitos , Humanos , Fígado/citologia , Fígado/diagnóstico por imagem , Masculino , Metformina/administração & dosagem , Proteômica/métodos
5.
Br J Clin Pharmacol ; 85(8): 1761-1770, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30973968

RESUMO

AIMS: Metformin is first-line treatment of type 2 diabetes mellitus and reduces cardiovascular events in patients with insulin resistance and type 2 diabetes. Target tissue for metformin action is thought to be the liver, where metformin distribution depends on facilitated transport by polyspecific transmembrane organic cation transporters (OCTs). Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with strong associations to insulin resistance and the metabolic syndrome, but whether NAFLD affects metformin biodistribution to the liver is not known. In this study, the primary aim was to investigate in vivo hepatic uptake of metformin dynamically in humans with variable degrees of liver affection. As a secondary aim, we wished to correlate hepatic metformin distribution with OCT gene transcription determined in diagnostic liver biopsies. METHODS: Eighteen patients with biopsy-proven NAFLD were investigated using 11C-metformin PET/CT technique. Gene transcripts of OCTs were determined by real-time polymerase chain reaction (PCR). RESULTS: We observed similar hepatic volume of distribution of metformin between patients with simple steatosis and non-alcoholic steatohepatitis (NASH) (Vd 2.38 ± 0.56 vs. 2.10 ± 0.39, P = 0.3). There was no association between hepatic exposure to metformin and the degree of inflammation or fibrosis, and no clear correlation between metformin distribution and OCT gene transcription. CONCLUSION: Metformin is distributed to the liver in patients with NAFLD and the distribution is not impaired by inflammation or fibrosis. The findings imply that metformin action in liver in patients with NAFLD may be preserved.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Fígado/metabolismo , Metformina/farmacocinética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Biópsia , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/etiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Fígado/patologia , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual
6.
Perfusion ; 33(5): 346-353, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29380669

RESUMO

BACKGROUND: Mean arterial blood pressure (MAP) and/or pump flow during normothermic cardiopulmonary bypass (CPB) are the most important factors of cerebral perfusion. The aim of this study was to explore the influence of CPB blood flow on cerebral blood flow (CBF) measured by dynamic positron emission tomography (PET) using 15O-labelled water with no pharmacological interventions to maintain the MAP. METHODS: Eight pigs (69-71 kg) were connected to normothermic CPB. After 60 minutes (min) with a CPB pump flow of 60 mL/kg/min, the pigs were changed to either 35 mL/kg/min or 47.5 mL/kg/min for 60 min and, thereafter, all the pigs returned to 60 mL/kg/min for another 60 min. The MAP was measured continuously and the CBF was measured by positron emission tomography (PET) during spontaneous circulation and at each CPB pump flow after 30 min of steady state. RESULTS: Two pigs were excluded due to complications. CBF increased from spontaneous circulation to a CPB pump flow of 60 mL/kg/min. A reduction in CPB pump flow to 47.5 mL/kg/min (n=3) resulted in only minor changes in CBF while a reduction to 35 mL/kg/min (n=3) caused a pronounced change (correlation coefficient (R2) 0.56). A return of CPB pump flow to 60 mL/kg/min was followed by an increase in CBF, except in the one pig with the lowest CBF during low flow (R2=0.44). CBF and MAP were not correlated (R2=0.20). CONCLUSION: In this experimental porcine study, a relationship was observed between pump flow and CBF under normothermic low-flow CPB. The effect of low pump flow on MAP showed substantial variations, with no correlation between CBF and MAP.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Neuroimagem Funcional/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Pressão Sanguínea , Temperatura Corporal , Encéfalo/diagnóstico por imagem , Ponte Cardiopulmonar/métodos , Feminino , Suínos
7.
J Hepatol ; 67(2): 321-327, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28249726

RESUMO

BACKGROUND & AIMS: Hepatobiliary secretion of bile acids is an important liver function. Here, we quantified the hepatic transport kinetics of conjugated bile acids using the bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) and positron emission tomography (PET). METHODS: Nine healthy participants and eight patients with varying degrees of cholestasis were examined with 11C-CSar PET and measurement of arterial and hepatic venous blood concentrations of 11C-CSar. RESULTS: Results are presented as median (range). The hepatic intrinsic clearance was 1.50 (1.20-1.76) ml blood/min/ml liver tissue in healthy participants and 0.46 (0.13-0.91) in patients. In healthy participants, the rate constant for secretion of 11C-CSar from hepatocytes to bile was 0.36 (0.30-0.62)min-1, 20 times higher than the rate constant for backflux from hepatocytes to blood (0.02, 0.005-0.07min-1). In the patients, rate constant for transport from hepatocyte to bile was reduced to 0.12 (0.006-0.27)min-1, 2.3times higher than the rate constant for backflux to blood (0.05, 0.04-0.09). The increased backflux did not fully normalize exposure of the hepatocyte to bile acids as mean hepatocyte residence time of 11C-CSar was 2.5 (1.6-3.1)min in healthy participants and 6.4 (3.1-23.7)min in patients. The rate constant for transport of 11C-CSar from intrahepatic to extrahepatic bile was 0.057 (0.023-0.11)min-1 in healthy participants and only slightly reduced in patients 0.039 (0.017-0.066). CONCLUSIONS: This first in vivo quantification of individual steps involved in the hepatobiliary secretion of a conjugated bile acid in humans provided new insight into cholestatic disease. LAY SUMMARY: Positron emission tomography (PET) using the radiolabelled bile acid (11C-CSar) enabled quantification of the individual steps of the hepatic transport of bile acids from blood to bile in man. Cholestasis reduced uptake and secretion and increased backflux to blood. These findings improve our understanding of cholestatic liver diseases and may support therapeutic decisions. CLINICAL TRIAL REGISTRATION NUMBER: The trial is registered at ClinicalTrials.gov (NCT01879735).


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Ácidos Cólicos/farmacocinética , Sarcosina/análogos & derivados , Idoso , Bile/metabolismo , Transporte Biológico Ativo , Radioisótopos de Carbono , Estudos de Casos e Controles , Colestase/sangue , Colestase/diagnóstico por imagem , Ácidos Cólicos/sangue , Feminino , Humanos , Cinética , Fígado/diagnóstico por imagem , Fígado/metabolismo , Circulação Hepática , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Sarcosina/sangue , Sarcosina/farmacocinética , Adulto Jovem
8.
J Cardiothorac Vasc Anesth ; 31(6): 2065-2071, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28693932

RESUMO

OBJECTIVE: To investigate whether changes in muscle tissue perfusion measured with positron emission tomography would be reflected by parallel changes in muscle tissue oxygen saturation (StO2) measured using near-infrared spectroscopy during high and low blood flow levels achieved using cardiopulmonary bypass (CPB) in an animal model. DESIGN: A prospective, randomized study. SETTING: Research laboratory, single institution. PARTICIPANTS: Eight pigs (69-71 kg). INTERVENTIONS: In anesthetized pigs, normothermic CPB was established with a blood flow of 60 mL/kg/min for 1 hour. Thereafter, a low blood flow of either 47.5 or 35 mL/kg/min was applied for 1 hour followed by a blood flow of 60 mL/kg/min for an additional hour. Regional StO2 was measured continuously by placing a near-infrared spectroscopy electrode on the skin above the gracilis muscle of the noncannulated back leg. Muscle tissue perfusion was measured using positron emission tomography with 15O-labeled water during spontaneous circulation and the different CPB blood flows. Systemic oxygen consumption was estimated by measurement of venous saturation and lactate levels. MEASUREMENTS AND MAIN RESULTS: The results showed profound systemic ischemia during low CPB blood flow. StO2 remained high until muscle tissue perfusion decreased to about 50%, after which StO2 paralleled the linear decrease in muscle tissue perfusion. CONCLUSION: In an experimental CPB animal model, StO2 was stable until muscle tissue perfusion was reduced by about 50%, and at lower blood flow levels, there was almost a linear relationship between StO2 and muscle tissue perfusion.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Ponte Cardiopulmonar/efeitos adversos , Hemodinâmica/fisiologia , Músculos/irrigação sanguínea , Músculos/fisiologia , Consumo de Oxigênio/fisiologia , Animais , Ponte Cardiopulmonar/tendências , Circulação Cerebrovascular/fisiologia , Feminino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Distribuição Aleatória , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Suínos
9.
EJNMMI Res ; 14(1): 31, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528239

RESUMO

BACKGROUND: Accurate diagnosis of axillary lymph node (ALN) metastases is essential for prognosis and treatment planning in breast cancer. Evaluation of ALN is done by ultrasound, which is limited by inter-operator variability, and by sentinel lymph node biopsy and/or ALN dissection, none of which are without risks and/or long-term complications. It is known that conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has limited sensitivity for ALN metastases. However, a recently developed dynamic whole-body (D-WB) [18F]FDG PET/CT scanning protocol, allowing for imaging of tissue [18F]FDG metabolic rate (MRFDG), has been shown to have the potential to increase lesion detectability. The study purpose was to examine detectability of malignant lesions in D-WB [18F]FDG PET/CT compared to conventional [18F]FDG PET/CT. RESULTS: This study prospectively included ten women with locally advanced breast cancer who were referred for an [18F]FDG PET/CT as part of their diagnostic work-up. They all underwent D-WB [18F]FDG PET/CT, consisting of a 6 min single bed dynamic scan over the chest region started at the time of tracer injection, a 64 min dynamic WB PET scan consisting of 16 continuous bed motion passes, and finally a contrast-enhanced CT scan, with generation of MRFDG parametric images. Lesion visibility was assessed by tumor-to-background and contrast-to-noise ratios using volumes of interest isocontouring tumors with a set limit of 50% of SUVmax and background volumes placed in the vicinity of tumors. Lesion visibility was best in the MRFDG images, with target-to-background values 2.28 (95% CI: 2.04-2.54) times higher than target-to-background values in SUV images, and contrast-to-noise values 1.23 (95% CI: 1.12-1.35) times higher than contrast-to-noise values in SUV images. Furthermore, five imaging experts visually assessed the images and three additional suspicious lesions were found in the MRFDG images compared to SUV images; one suspicious ALN, one suspicious parasternal lymph node, and one suspicious lesion located in the pelvic bone. CONCLUSIONS: D-WB [18F]FDG PET/CT with MRFDG images show potential for improved lesion detectability compared to conventional SUV images in locally advanced breast cancer. Further validation in larger cohorts is needed. CLINICAL TRIAL REGISTRATION: The trial is registered in clinicaltrials.gov, NCT05110443, https://www. CLINICALTRIALS: gov/study/NCT05110443?term=NCT05110443&rank=1 .

10.
EJNMMI Radiopharm Chem ; 8(1): 12, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314530

RESUMO

BACKGROUND: Ketones are increasingly recognized as an important and possibly oxygen sparing source of energy in vital organs such as the heart, the brain and the kidneys. Drug treatments, dietary regimens and oral ketone drinks designed to deliver ketones for organ and tissue energy production have therefore gained popularity. However, whether ingested ketones are taken up by various extra-cerebral tissues and to what extent is still largely unexplored. It was therefore the aim of this study to use positron emission tomography (PET) to explore the whole body dosimetry, biodistribution and kinetics of the ketone tracer (R)-[1-11C]ß-hydroxybutyrate ([11C]OHB). Six healthy subjects (3 women and 3 men) underwent dynamic PET studies after both intravenous (90 min) and oral (120 min) administration of [11C]OHB. Dosimetry estimates of [11C]OHB was calculated using OLINDA/EXM software, biodistribution was assessed visually and [11C]OHB tissue kinetics were obtained using an arterial input function and tissue time-activity curves. RESULTS: Radiation dosimetry yielded effective doses of 3.28 [Formula: see text]Sv/MBq (intravenous administration) and 12.51 [Formula: see text]Sv/MBq (oral administration). Intravenous administration of [11C]OHB resulted in avid radiotracer uptake in the heart, liver, and kidneys, whereas lesser uptake was observed in the salivary glands, pancreas, skeletal muscle and red marrow. Only minimal uptake was noted in the brain. Oral ingestion of the tracer resulted in rapid radiotracer appearance in the blood and radiotracer uptake in the heart, liver and kidneys. In general, [11C]OHB tissue kinetics after intravenous administration were best described by a reversible 2-tissue compartmental model. CONCLUSION: The PET radiotracer [11C]OHB shows promising potential in providing imaging data on ketone uptake in various physiologically relevant tissues. As a result, it may serve as a safe and non-invasive imaging tool for exploring ketone metabolism in organs and tissues of both patients and healthy individuals. Trial registration Clinical trials, NCT0523812, Registered February 10th 2022, https://clinicaltrials.gov/ct2/show/NCT05232812?cond=NCT05232812&draw=2&rank=1 .

11.
JHEP Rep ; 5(11): 100916, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37886434

RESUMO

Background & Aims: In Wilson disease (WD), copper accumulation and increased non-ceruloplasmin-bound copper in plasma lead to liver and brain pathology. To better understand the fate of non-ceruloplasmin-bound copper, we used PET/CT to examine the whole-body distribution of intravenously injected 64-copper (64Cu). Methods: Eight patients with WD, five heterozygotes, and nine healthy controls were examined by dynamic PET/CT for 90 min and static PET/CT up to 20 h after injection. We measured 64Cu activity in blood and tissue and quantified the kinetics by compartmental analysis. Results: Initially, a large fraction of injected 64Cu was distributed to extrahepatic tissues, especially skeletal muscle. Thus, across groups, extrahepatic tissues accounted for 45-58% of the injected dose (%ID) after 10 min, and 45-55% after 1 h. Kinetic analysis showed rapid exchange of 64Cu between blood and muscle as well as adipose tissue, with 64Cu retention in a secondary compartment, possibly mitochondria. This way, muscle and adipose tissue may protect the brain from spikes in non-ceruloplasmin-bound copper. Tiny amounts of cerebral 64Cu were detected (0.2%ID after 90 min and 0.3%ID after 6 h), suggesting tight control of cerebral copper in accordance with a cerebral clearance that is 2-3-fold lower than in muscle. Compared to controls, patients with WD accumulated more hepatic copper 6-20 h after injection, and also renal copper at 6 h. Conclusion: Non-ceruloplasmin-bound copper is initially distributed into a number of tissues before being redistributed slowly to the eliminating organ, the liver. Cerebral uptake of copper is extremely slow and likely highly regulated. Our findings provide new insights into the mechanisms of copper control. Impact and implications: Maintaining non-ceruloplasmin-bound copper within the normal range is an important treatment goal in WD as this "free" copper is considered toxic to the liver and brain. We found that intravenously injected non-ceruloplasmin-bound copper quickly distributed to a number of tissues, especially skeletal muscle, subcutaneous fat, and the liver, while uptake into the brain was slow. This study offers new insights into the mechanisms of copper control, which may encourage further research into potential new treatment targets. Clinical trial number: 2016-001975-59.

12.
J Theor Biol ; 295: 1-8, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22094364

RESUMO

When testing new PET radiotracers or new applications of existing tracers, the blood-tissue exchange and the metabolism need to be examined. However, conventional plots of measured time-activity curves from dynamic PET do not reveal the inherent kinetic information. A novel model-independent volume-influx plot (vi-plot) was developed and validated. The new vi-plot shows the time course of the instantaneous distribution volume and the instantaneous influx rate. The vi-plot visualises physiological information that facilitates model selection and it reveals when a quasi-steady state is reached, which is a prerequisite for the use of the graphical analyses by Logan and Gjedde-Patlak. Both axes of the vi-plot have direct physiological interpretation, and the plot shows kinetic parameter in close agreement with estimates obtained by non-linear kinetic modelling. The vi-plot is equally useful for analyses of PET data based on a plasma input function or a reference region input function. The vi-plot is a model-independent and informative plot for data exploration that facilitates the selection of an appropriate method for data analysis.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Interpretação Estatística de Dados , Humanos , Fígado/diagnóstico por imagem , Taxa de Depuração Metabólica , Compostos Radiofarmacêuticos/farmacocinética , Suínos
13.
Nucl Med Biol ; 114-115: 49-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36095922

RESUMO

INTRODUCTION: Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for bile acids to function as detergents and signal carriers. Perturbation of the EHC by disease or drugs may lead to serious and life-threatening liver and gastrointestinal disorders. In this proof-of-concept study in pigs, we investigate the potential of N-(4-[18F]fluorobenzyl)cholylglycine ([18F]FBCGly) as tracer for quantitative positron emission tomography (PET) of the EHC of conjugated bile acids. METHODS: The biodistribution of [18F]FBCGly was investigated by PET/CT in domestic pigs following intravenous and intraileal administration of the tracer. Hepatic kinetics were estimated from PET and blood data using a 2-tissue compartmental model and dual-input of [18F]FBCGly. The ileal uptake of [18F]FBCGly was investigated with co-injection of nifedipine and endogenous cholyltaurine. Dosimetry was estimated from the PET data using the Olinda 2.0 software. Blood, bile and urine samples were analyzed for possible fluorine-18 labelled metabolites of [18F]FBCGly. RESULTS: [18F]FBCGly was rapidly taken up by the liver and excreted into bile, and underwent EHC without being metabolized. Both nifedipine and endogenous cholyltaurine inhibited the ileal uptake of [18F]FBCGly. The flow-dependent hepatic uptake clearance was estimated to median 1.2 mL blood/min/mL liver tissue. The mean residence time of [18F]FBCGly in hepatocytes was 4.0 ± 1.1 min. Critical organs for [18F]FBCGly were the gallbladder wall (0.94 mGy/MBq) and the small intestine (0.50 mGy/MBq). The effective dose for [18F]FBCGly was 36 µSv/MBq. CONCLUSION: We have shown that [18F]FBCGly undergoes EHC in pigs without being metabolized and that its ileal uptake is inhibited by nifedipine and endogenous bile acids. Combined with our previous findings in rats, we believe that [18F]FBCGly has potential as PET tracer for assessment of EHC of conjugated bile acids under physiological conditions as well as conditions with perturbed hepatic and ileal bile acid transport.


Assuntos
Ácido Glicocólico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Suínos , Ratos , Distribuição Tecidual , Nifedipino , Tomografia por Emissão de Pósitrons/métodos , Circulação Êntero-Hepática , Ácidos e Sais Biliares , Radiometria , Ácido Taurocólico
14.
Lab Anim ; 56(3): 287-291, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34596450

RESUMO

In preclinical positron emission tomography animal studies, continuous blood sampling is used to measure the time course of the activity concentration in arterial blood. However, pigs have hypercoagulable blood that tends to clot inside plastic tubes. We tested several tube materials and lengths and the use of three-way connectors. We validated set-ups for automated blood sampling with and without blood recirculation that could run for 90 minutes without problematic clots and without any evidence of emboli formation during necropsy.


Assuntos
Tomografia por Emissão de Pósitrons , Sus scrofa , Animais , Coleta de Amostras Sanguíneas , Tomografia por Emissão de Pósitrons/métodos , Suínos
15.
EJNMMI Res ; 12(1): 17, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362761

RESUMO

BACKGROUND: The autonomic nervous system is frequently affected in some neurodegenerative diseases, including Parkinson's disease and Dementia with Lewy bodies. In vivo imaging methods to visualize and quantify the peripheral cholinergic nervous system are lacking. By using [18F]FEOBV PET, we here describe the peripheral distribution of the specific cholinergic marker, vesicular acetylcholine transporters (VAChT), in human subjects. We included 15 healthy subjects aged 53-86 years for 70 min dynamic PET protocol of peripheral organs. We performed kinetic modelling of the adrenal gland, pancreas, myocardium, renal cortex, spleen, colon, and muscle using an image-derived input function from the aorta. A metabolite correction model was generated from venous blood samples. Three non-linear compartment models were tested. Additional time-activity curves from 6 to 70 min post injection were generated for prostate, thyroid, submandibular-, parotid-, and lacrimal glands. RESULTS: A one-tissue compartment model generated the most robust fits to the data. Total volume-of-distribution rank order was: adrenal gland > pancreas > myocardium > spleen > renal cortex > muscle > colon. We found significant linear correlations between total volumes-of-distribution and standard uptake values in most organs. CONCLUSION: High [18F]FEOBV PET signal was found in structures with known cholinergic activity. We conclude that [18F]FEOBV PET is a valid tool for estimating VAChT density in human peripheral organs. Simple static images may replace kinetic modeling in some organs and significantly shorten scan duration. Clinical Trial Registration Trial registration: NCT, NCT03554551. Registered 31 May 2018. https://clinicaltrials.gov/ct2/show/NCT03554551?term=NCT03554551&draw=2&rank=1 .

16.
J Parkinsons Dis ; 12(8): 2493-2506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36336941

RESUMO

BACKGROUND: Cholinergic degeneration is strongly associated with cognitive decline in patients with Parkinson's disease (PD) but may also cause motor symptoms and olfactory dysfunction. Regional differences are striking and may reflect different PD related symptoms and disease progression patterns. OBJECTIVE: To map and quantify the regional cerebral cholinergic alterations in non-demented PD patients. METHODS: We included 15 non-demented PD patients in early-moderate disease stage and 15 age- and sex-matched healthy controls for [18F]FEOBV positron emission tomography imaging. We quantitated regional variations using VOI-based analyses which were supported by a vertex-wise cluster analysis. Correlations between imaging data and clinical and neuropsychological data were explored. RESULTS: We found significantly decreased [18F]FEOBV uptake in global neocortex (38%, p = 0.0002). The most severe reductions were seen in occipital and posterior temporo-parietal regions (p < 0.0001). The vertex-wise cluster analysis corroborated these findings. All subcortical structures showed modest non-significant reductions. Motor symptoms (postural instability and gait difficulty) and cognition (executive function and composite z-score) correlated with regional [18F]FEOBV uptake (thalamus and cingulate cortex/insula/hippocampus, respectively), but the correlations were not statistically significant after multiple comparison correction. A strong correlation was found between interhemispheric [18F]FEOBV asymmetry, and motor symptom asymmetry of the extremities (r = 0.84, p = 0.0001). CONCLUSION: Cortical cholinergic degeneration is prominent in non-demented PD patients, but more subtle in subcortical structures. Regional differences suggest uneven involvement of cholinergic nuclei in the brain and may represent a window to follow disease progression. The correlation between asymmetric motor symptoms and neocortical [18F]FEOBV asymmetry indicates that unilateral cholinergic degeneration parallels ipsilateral dopaminergic degeneration.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Estudos de Casos e Controles , Tomografia por Emissão de Pósitrons , Colinérgicos , Progressão da Doença
17.
Parkinsonism Relat Disord ; 104: 21-25, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198248

RESUMO

INTRODUCTION: The peripheral autonomic nervous system may be involved years before onset of motor symptoms in some patients with Parkinson's disease (PD). Specific imaging techniques to quantify the cholinergic nervous system in peripheral organs are an unmet need. We tested the hypothesis that patients with PD display decreased [18F]FEOBV uptake in peripheral organs - a sign of parasympathetic denervation. METHODS: We included 15 PD patients and 15 age- and sex matched healthy controls for a 70 min whole-body dynamic positron emission tomography (PET) acquisition. Compartmental modelling was used for tracer kinetic analyses of adrenal gland, pancreas, myocardium, spleen, renal cortex, muscle and colon. Standard uptake values (SUV) at 60-70 min post injection were also extracted for these organs. Additionally, SUVs were also determined in the total colon, prostate, parotid and submandibular glands. RESULTS: We found no statistically significant difference of [18F]FEOBV binding parameters in any organs between patients with PD and healthy controls, although trends were observed. The pancreas SUV showed a 14% reduction in patients (P = 0.021, not statistically significant after multiple comparison correction). We observed a trend towards lower SUVs in the pancreas, colon, adrenal gland, and myocardium of PD patients with versus without probable REM sleep behavior disorder. CONCLUSION: [18F]FEOBV PET may not be a sensitive marker for parasympathetic degeneration in patients with PD.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Masculino , Humanos , Doença de Parkinson/diagnóstico por imagem , Piperidinas , Tomografia por Emissão de Pósitrons/métodos , Parassimpatectomia
18.
Am J Physiol Gastrointest Liver Physiol ; 301(2): G269-77, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21636533

RESUMO

Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle metabolism of ammonia and amino acids in 14 patients with cirrhosis and in 7 healthy subjects by combining [(13)N]ammonia positron emission tomography (PET) of the thigh muscle with measurements of blood flow and arteriovenous (A-V) concentrations of ammonia and amino acids. PET was used to measure the metabolism of blood-supplied ammonia and the A-V measurements were used to measure the total ammonia metabolism across the thigh muscle. After intake of BCAA, blood ammonia increased more than 30% in both groups of subjects (both P < 0.05). Muscle clearance of blood-supplied ammonia (PET) was unaffected (P = 0.75), but the metabolic removal rate (PET) increased significantly because of increased blood ammonia in both groups (all P < 0.05). The total ammonia clearance across the leg muscle (A-V) increased by more than 50% in both groups, and the flux (A-V) of ammonia increased by more than 45% (all P < 0.05). BCAA intake led to a massive glutamine release from the muscle (cirrhotic patients, P < 0.05; healthy subjects, P = 0.12). In conclusion, BCAA enhanced the intrinsic muscle metabolism of ammonia but not the metabolism of blood-supplied ammonia in both the patients with cirrhosis and in the healthy subjects.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Amônia/sangue , Cirrose Hepática Alcoólica/sangue , Músculo Esquelético/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Aminoácidos de Cadeia Ramificada/farmacocinética , Amônia/farmacocinética , Feminino , Artéria Femoral/fisiologia , Veia Femoral/fisiologia , Glutamina/sangue , Glutamina/farmacocinética , Humanos , Isoleucina/sangue , Isoleucina/farmacocinética , Leucina/sangue , Leucina/farmacocinética , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Artéria Radial/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Coxa da Perna/irrigação sanguínea , Coxa da Perna/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Valina/sangue , Valina/farmacocinética
19.
Eur J Nucl Med Mol Imaging ; 38(2): 263-70, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20882283

RESUMO

PURPOSE: Quantification of hepatic tracer kinetics by PET requires measurement of tracer input from the hepatic artery (HA) and portal vein (PV). We wished to develop a method for estimating dual tracer input without the necessity to sample PV blood. METHODS: Pigs weighing 40 kg were given bolus doses of C(15)O (CO), 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG), [(11)C]-methylglucose (MG), 2-[(18)F]fluoro-2-deoxy-D-galactose (FDGal) or H(2)(15)O(H(2)O). Tracer concentration 3-min time courses were measured in the femoral artery and PV by blood sampling. Blood flow was measured in the HA and PV using flow-meters. A model for transfer of tracer through the splanchnic circulation was used to estimate values of a tracer-specific model parameter ß. Tracer-specific mean values of ß were used to estimate tracer concentration time courses in the PV from the measured arterial concentration. A model-derived dual-input was calculated using the mean HA flow fraction (0.25) and validated by comparison of the use of the measured dual-input and a kinetic model with a fixed "true" K(1)(true), i.e. clearance of tracer from blood to liver cells. RESULTS: The rank order of the means of ß was CO < FDG ≈ MG < FDGal < H(2)O, reflecting their different splanchnic mean transit times. Estimated K(1)(est) was not significantly different from "true" K(1)(true). CONCLUSION: The hepatic dual tracer input, which is of great importance for the assessment of processes such as transfer across the plasma-hepatocyte membrane or hepatic blood perfusion, can be well approximated in pigs without the necessity to sample PV blood and measure hepatic blood flow; only arterial blood sampling is needed.


Assuntos
Fígado/fisiologia , Modelos Biológicos , Veia Porta , Traçadores Radioativos , Suínos , Animais , Feminino , Artéria Hepática/metabolismo , Cinética , Fígado/irrigação sanguínea , Veia Porta/metabolismo , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes
20.
J Theor Biol ; 285(1): 177-81, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21756919

RESUMO

The lumped constant is a proportionality factor for converting a tracer analogue's metabolic rate to that of its mother substance. In a uniform system, it is expressed as the ratio of the tracer analogue's extraction fraction (E*) to the extraction fraction of its mother substance (E). Here we show that, in capillary beds perfused by unidirectional blood flow, unequal concentration gradients of the tracer analogue and of the mother substance influence extraction fractions both locally and across the organ and that the direct proportionality of E* and E must be replaced by ln(1-E*)/ln(1-E) to yield Λ, i.e. the lumped constant derived from first principles of bi-substrate enzyme and membrane kinetics. In other words, at a given capillary blood flow (F), the ratio of systemic clearances (FE*/FE), often used in compartmental kinetic analysis, must be replaced by the ratio of the intrinsic clearances, [-F ln(1-E*)]/[-F ln(1-E)]. The conclusion is supported by 2-[(18)F]fluoro-2-deoxy-D-galactose removal kinetics in pig liver in vivo from previous publications by the dependence of E*/E and the independence of Λ, on blood galactose concentration. Moreover, our corrections to the results of compartmental kinetics are quantified for comparing extraction fractions in different regions of interest (e.g. by positron emission tomography) and for calculating Λ using whole-organ E* and E measured by arteriovenous concentration differences.


Assuntos
Capilares/metabolismo , Modelos Cardiovasculares , Traçadores Radioativos , Compostos Radiofarmacêuticos/sangue , Animais , Fluordesoxiglucose F18/sangue , Humanos , Fígado/metabolismo , Taxa de Depuração Metabólica , Microcirculação/fisiologia , Tomografia por Emissão de Pósitrons , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa