Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Conserv Biol ; 36(1): e13794, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34219282

RESUMO

Freshwater ecosystems, generally adjacent to human population and more contaminated relative to adjacent marine ecosystems, are vulnerable to microplastic contamination. We sampled 7 species of fish from Lake Ontario and Lake Superior and assessed their gastrointestinal (GI) tracts to quantify ingested microplastics and other anthropogenic particles. A subset of the microparticles were chemically analyzed to confirm polymer types and anthropogenic origins. We documented the highest concentration of microplastics and other anthropogenic microparticles ever reported in bony fish. We found 12,442 anthropogenic microparticles across 212 fish (8 species) from nearshore Lake Ontario, 943 across 50 fish (1 species) from Humber River, and 3094 across 119 fish (7 species) from Lake Superior. Fish from Lake Ontario had the greatest mean abundance of anthropogenic microparticles in their GI tracts (59 particles/fish [SD 104]), with up to 915 microparticles in a single fish. Fish from Lake Superior contained a mean [SD] of 26 [74] particles/fish, and fish from Humber River contained 19 [14] particles/fish. Most particles were microfibers. Overall, ≥90% of particles were anthropogenic, of which 35-59% were microplastics. Polyethylene (24%), polyethylene terephthalate (20%), and polypropylene (18%) were the most common microplastics. Ingestion of anthropogenic particles was significantly different among species within Lake Ontario (p < 0.05), and the abundance of anthropogenic particles increased as fish length increased in Lake Ontario (ρ = 0.62). Although we cannot extrapolate the concentration of microplastics in the water and sediments of these fish, the relatively high abundance of microplastics in the GI tracts of fish suggests environmental exposure may be above threshold concentrations for risk.


Contaminación por Microplásticos en Peces de los Grandes Lagos Resumen Los ecosistemas de agua dulce, generalmente contiguos a poblaciones humanas y más contaminados en relación con los ecosistemas marinos adyacentes, son vulnerables a la contaminación por microplásticos. Muestreamos siete especies de peces del Lago Ontario y del Lago Superior y analizamos sus tractos gastrointestinales (GI) para cuantificar los microplásticos ingeridos, además de otras partículas antropogénicas. Un subconjunto de las micropartículas fue analizado químicamente para confirmar los tipos de polímero y los orígenes antropogénicos. Documentamos la concentración más alta de microplásticos y de otras micropartículas antropogénicas jamás reportada en peces óseos. Encontramos 12,442 micropartículas antropogénicas en 212 peces (ocho especies) del Lago Ontario, 943 en 50 peces (una especie) en el Río Humber y 30,094 en 119 peces (siete especies) del Lago Superior. Los peces del Lago Ontario tuvieron la mayor abundancia promedio de micropartículas antropogénicas en sus tractos GI (59 partículas/pez [DS 104]), con hasta 915 micropartículas en un solo pez. Los peces del Lago Superior tuvieron un promedio [DS] de 26 [74] partículas/pez y los peces del Río Humber tuvieron 19 [14] partículas/pez. La mayoría de las partículas eran microfibras. En general, ≥90% de las partículas eran antropogénicas, de las cuales el 35-39% eran microplásticos. El polietileno (24%), el tereftalato de polietileno (20%) y el polipropileno (18%) fueron los microplásticos más comunes. La ingesta de partículas antropogénicas tuvo una diferencia significativa entre las especies del Lago Ontario (p < 0.05) y la abundancia de las partículas antropogénicas incrementó conforme aumentó la longitud de los peces en el Lago Ontario (ρ = 0.62). Aunque no podemos extrapolar la concentración de microplásticos en el agua y los sedimentos para estos peces, la abundancia relativamente alta de microplásticos en los tractos GI de los peces sugiere que la exposición ambiental puede estar por encima del umbral de concentraciones para el riesgo.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Lagos , Plásticos , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 56(13): 9367-9378, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35731673

RESUMO

Pathways for microplastics to aquatic ecosystems include agricultural runoff, urban runoff, and treated or untreated wastewater. To better understand the importance of each pathway as a vector for microplastics into waterbodies and for mitigation, we sampled agricultural runoff, urban stormwater runoff, treated wastewater effluent, and the waterbodies downstream in four regions across North America: the Sacramento Delta, the Mississippi River, Lake Ontario, and Chesapeake Bay. The highest concentrations of microplastics in each pathway varied by region: agricultural runoff in the Sacramento Delta and Mississippi River, urban stormwater runoff in Lake Ontario, and treated wastewater effluent in Chesapeake Bay. Material types were diverse and not unique across pathways. However, a PERMANOVA found significant differences in morphological assemblages among pathways (p < 0.005), suggesting fibers as a signature of agricultural runoff and treated wastewater effluent and rubbery fragments as a signature of stormwater. Moreover, the relationship between watershed characteristics and particle concentrations varied across watersheds (e.g., with agricultural parameters only being important in the Sacramento Delta). Overall, our results suggest that local monitoring is essential to inform effective mitigation strategies and that assessing the assemblages of morphologies should be prioritized in monitoring programs to identify important pathways of contamination.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise
3.
Anal Chem ; 93(21): 7543-7548, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009953

RESUMO

Microplastic pollution research has suffered from inadequate data and tools for spectral (Raman and infrared) classification. Spectral matching tools often are not accurate for microplastics identification and are cost-prohibitive. Lack of accuracy stems from the diversity of microplastic pollutants, which are not represented in spectral libraries. Here, we propose a viable software solution: Open Specy. Open Specy is on the web (www.openspecy.org) and in an R package. Open Specy is free and allows users to view, process, identify, and share their spectra to a community library. Users can upload and process their spectra using smoothing (Savitzky-Golay filter) and polynomial baseline correction techniques (IModPolyFit). The processed spectrum can be downloaded to be used in other applications or identified using an onboard reference library and correlation-based matching criteria. Open Specy's data sharing and session log features ensure reproducible results. Open Specy houses a growing library of reference spectra, which increasingly represents the diversity of microplastics as a contaminant suite. We compared the functionality and accuracy of Open Specy for microplastic identification to commonly used spectral analysis software. We found that Open Specy was the only open source software and the only software with a community library, and Open Specy had comparable accuracy to popular software (OMNIC Picta and KnowItAll). Future developments will enhance spectral identification accuracy as the reference library and functionality grows through community-contributed spectra and community-developed code. Open Specy can also be used for applications beyond microplastic analysis. Open Specy's source code is open source (CC-BY-4.0, attribution only) (https://github.com/wincowgerDEV/OpenSpecy).


Assuntos
Microplásticos , Plásticos , Algoritmos , Software
4.
Ecol Appl ; 31(5): e02320, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33650187

RESUMO

Plastic is pervasive in modern economies and ecosystems. Freshwater fish ingest microplastics (i.e., particles <5 mm), but no studies have examined historical patterns of their microplastic consumption. Measuring the patterns of microplastic pollution in the past is critical for predicting future trends and for understanding the relationship between plastics in fish and the environment. We measured microplastics in digestive tissues of specimens collected from the years 1900-2017 and preserved in museum collections. We collected new fish specimens in 2018, along with water and sediment samples. We selected four species: Micropterus salmoides (largemouth bass), Notropis stramineus (sand shiner), Ictalurus punctatus (channel catfish), and Neogobius melanostomus (round goby) because each was well represented in museum collections, are locally abundant, and collected from urban habitats. For each individual, we dissected the digestive tissue from esophagus to anus, subjected tissue to peroxide oxidation, examined particles under a dissecting microscope, and used Raman spectroscopy to characterize the particles' chemical composition. No microplastics were detected in any fish prior to 1950. From mid-century to 2018, microplastic concentrations showed a significant increase when data from all fish were considered together. All detected particles were fibers, and represented plastic polymers (e.g., polyester) along with mixtures of natural and synthetic textiles. For the specimens collected in 2018, microplastics in fish and sediment showed similar patterns across study sites, while water column microplastics showed no differences among locations. Overall, plastic pollution in common freshwater fish species is increasing and pervasive across individuals and species, and is likely related to changes in environmental concentrations. Museum specimens are an overlooked source for assessing historical patterns of microplastic pollution, and for predicting future trends in freshwater fish, thereby helping to sustain the health of commercial and recreational fisheries worldwide.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Água Doce , Humanos , Museus , Plásticos , Poluentes Químicos da Água/análise
5.
Anal Chem ; 92(3): 2443-2451, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31939281

RESUMO

As smaller particle sizes are increasingly included in microplastic research, it is critical to chemically characterize microparticles to identify whether particles are indeed microplastics. To increase the accessibility of methods for characterizing microparticles via Raman spectroscopy, we created an application-based library of Raman spectroscopy parameters specific to microplastics based on color, morphology, and size. We also created two spectral libraries that are representative of microplastics found in environmental samples. Here, we present SLoPP, a spectral library of plastic particles, consisting of 148 reference spectra, including a diversity of polymer types, colors, and morphologies. To account for the effects of aging on microplastics and associated changes to Raman spectra, we present a spectral library of plastic particles aged in the environment (SLoPP-E). SLoPP-E includes 113 spectra, including a diversity of types, colors, and morphologies. The microplastics used to make SLoPP-E include environmental samples obtained across a range of matrices, geographies, and time. Our libraries increase the likelihood of spectral matching for a broad range of microplastics because our libraries include plastics containing a range of additives and pigments that are not generally included in commercial libraries. When used in combination with commercial libraries of over 24 000 spectra, 63% of the top 5 matches across all particles tested (product and environmental) are from SLoPP and SLoPP-E. These tools were developed to improve the accessibility of microplastics research in response to a growing and multidisciplinary field, as well as to enhance data quality and consistency.

7.
Environ Health Perspect ; 132(7): 77004, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016599

RESUMO

BACKGROUND: Microplastics are a pervasive contaminant cycling through food webs-leading to concerns regarding exposure and risk to humans. OBJECTIVES: We aimed to quantify and characterize anthropogenic particle contamination (including microplastics) in fish caught for human consumption from the Humber Bay region of Lake Ontario. We related quantities of anthropogenic particles to other factors (e.g., fish size) that may help in understanding accumulation of microplastics in fish. METHODS: A total of 45 samples of six fish species collected from Humber Bay in Lake Ontario near Toronto, Ontario, Canada, were examined for anthropogenic particles in their gastrointestinal (GI) tracts and fillets. Using microscopy and spectroscopy, suspected anthropogenic particles were identified and characterized. RESULTS: We observed anthropogenic particles in the GI tracts and fillets of all species. Individual fish had a mean±standard deviation of 138±231 anthropogenic particles, with a single fish containing up to 1,508 particles. GI tracts had 93±226 particles/fish (9.8±32.6 particles/gram), and fillets had 56±61 particles/fish (0.5±0.8 particles/gram). Based on a consumption rate of 2 servings/week, the average yearly human exposure through the consumption of these fish fillets would be 12,800±18,300 particles. DISCUSSION: Our findings suggest that consumption of recreationally caught freshwater fish can be a pathway for human exposure to microplastics. The elevated number of particles observed in fish from Humber Bay highlights the need for large-scale geographic monitoring, especially near sources of microplastics. Currently, it is unclear what the effects of ingesting microplastics are for humans, but given that recreationally caught freshwater fish are one pathway for human exposure, these data can be incorporated into future human health risk assessment frameworks for microplastics. https://doi.org/10.1289/EHP13540.


Assuntos
Monitoramento Ambiental , Peixes , Lagos , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Animais , Poluentes Químicos da Água/análise , Ontário , Lagos/química , Monitoramento Ambiental/métodos , Humanos , Urbanização
8.
Environ Pollut ; 344: 123185, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147950

RESUMO

Few studies have documented microplastics (<5 mm) in shark gastrointestinal (GI) tracts. Here, we report microplastic contamination in the tiger shark (Galeocerdo cuvier), an apex predator and generalist feeder, at several different life stages. We examined seven stomachs and one spiral valve from eight individuals captured off the United States Atlantic and Gulf of Mexico coasts (eastern US) and conducted a literature review of publications reporting anthropogenic debris ingestion in elasmobranchs. Specimens were chemically digested in potassium hydroxide (KOH) and density separated using calcium chloride (CaCl2) before quantifying and categorizing suspected anthropogenic particles (>45 µm) by size, morphology, and colour. Anthropogenic particles were found in the stomachs and spiral valve of all sharks. A total of 3151 anthropogenic particles were observed across all stomachs with 1603 anthropogenic particles observed in a single specimen. A subset of suspected anthropogenic particles (14%) were chemically identified using Raman spectroscopy and µ-Fourier Transform Infrared spectroscopy to confirm anthropogenic origin. Overall, ≥95% of particles analyzed via spectroscopy were confirmed anthropogenic, with 45% confirmed as microplastics. Of the microplastics, polypropylene (32%) was the most common polymer. Diverse microparticle morphologies were found, with fragments (57%) and fibers (41%) most frequently observed. The high occurrence and abundance of anthropogenic particle contamination in tiger sharks is likely due to their generalist feeding strategy and high trophic position compared to other marine species. The literature review resulted in 32 studies published through 2022. Several methodologies were employed, and varying amounts of contamination were reported, but none reported contamination as high as detected in our study. Anthropogenic particle ingestion studies should continue in the tiger shark, in addition to other elasmobranch species, to further understand the effects of anthropogenic activities and associated pollution on these predators.


Assuntos
Hidróxidos , Microplásticos , Compostos de Potássio , Tubarões , Animais , Oceano Atlântico , Plásticos , Estômago
9.
Chemosphere ; 333: 138883, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169088

RESUMO

Quality assurance and quality control (QA/QC) techniques are critical to analytical chemistry, and thus the analysis of microplastics. Procedural blanks are a key component of QA/QC for quantifying and characterizing background contamination. Although procedural blanks are becoming increasingly common in microplastics research, how researchers acquire a blank and report and/or use blank contamination data varies. Here, we use the results of laboratory procedural blanks from a method evaluation study to inform QA/QC procedures for microplastics quantification and characterization. Suspected microplastic contamination in the procedural blanks, collected by 12 participating laboratories, had between 7 and 511 particles, with a mean of 80 particles per sample (±SD 134). The most common color and morphology reported were black fibers, and the most common size fraction reported was 20-212 µm. The lack of even smaller particles is likely due to limits of detection versus lack of contamination, as very few labs reported particles <20 µm. Participating labs used a range of QA/QC techniques, including air filtration, filtered water, and working in contained/'enclosed' environments. Our analyses showed that these procedures did not significantly affect blank contamination. To inform blank subtraction, several subtraction methods were tested. No clear pattern based on total recovery was observed. Despite our results, we recommend commonly accepted procedures such as thorough training and cleaning procedures, air filtration, filtered water (e.g., MilliQ, deionized or reverse osmosis), non-synthetic clothing policies and 'enclosed' air flow systems (e.g., clean cabinet). We also recommend blank subtracting by a combination of particle characteristics (color, morphology and size fraction), as it likely provides final microplastic particle characteristics that are most representative of the sample. Further work should be done to assess other QA/QC parameters, such as the use of other types of blanks (e.g., field blanks, matrix blanks) and limits of detection and quantification.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Laboratórios , Controle de Qualidade , Água/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 807(Pt 1): 150453, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599954

RESUMO

Limited research has been conducted on microplastics in terrestrial ecosystems and biota, despite being some of the most ubiquitous environmental pollutants. We investigated the presence of microplastics (over 125 µm) in tree swallow (Tachicyneta bicolor) chicks (10 d. o.), an aerial insectivore whose diet involves terrestrial and/or freshwater sources. Swallows nested immediately downstream (300 m) of the discharge pipe of a large, urban wastewater treatment plant (WWTP) or at a rural conservation area (40 km apart). Anthropogenic microparticles (including microplastics) were identified in nearly all WWTP chicks (90%; N = 20) and reference chicks (83%; N = 20). All microparticles were fibers (100%) in the gastro-intestinal (GI) tracts of WWTP nestlings, whereas unexpectedly, they were more diverse in the GI tracts of reference chicks, with ~15% characterized as pre-production plastic pellets. The fecal sacs of most nestlings (90%) contained microparticles, and all were characterized as fibers suggesting their excretion by tree swallows. Compared to WWTP chicks, the reference chicks had more microparticles in their fecal sacs and larger particles (length, width) in their GI tracts, likely reflecting the more aquatic-based diet of the reference chicks fed insects caught adjacent to the nearby dam, compared to the more terrestrial-based diet of the WWTP chicks. The numbers of microparticles were not correlated between GI tracts and fecal sacs, nor with the chicks' condition or size (weight, organs, feathers). We recommend sampling macroinvertebrate prey to permit stronger conclusions regarding WWTPs as possible sources of microplastics for swallows, and to determine if such macroinvertebrates may be a non-lethal method to characterize microparticle diversity ingested by birds as presently identified in chicks' GI tracts. We conclude that sampling fecal sacs only, while not indicative of the diversity of microplastics ingested by terrestrial passerines (e.g., tree swallows), is useful for determining their exposure to microparticles.


Assuntos
Poluentes Ambientais , Andorinhas , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
11.
Chemosphere ; 308(Pt 3): 136449, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115477

RESUMO

Microscopy is often the first step in microplastic analysis and is generally followed by spectroscopy to confirm material type. The value of microscopy lies in its ability to provide count, size, color, and morphological information to inform toxicity and source apportionment. To assess the accuracy and precision of microscopy, we conducted a method evaluation study. Twenty-two laboratories from six countries were provided three blind spiked clean water samples and asked to follow a standard operating procedure. The samples contained a known number of microplastics with different morphologies (fiber, fragment, sphere), colors (clear, white, green, blue, red, and orange), polymer types (PE, PS, PVC, and PET), and sizes (ranging from roughly 3-2000 µm), and natural materials (natural hair, fibers, and shells; 100-7000 µm) that could be mistaken for microplastics (i.e., false positives). Particle recovery was poor for the smallest size fraction (3-20 µm). Average recovery (±StDev) for all reported particles >50 µm was 94.5 ± 56.3%. After quality checks, recovery for >50 µm spiked particles was 51.3 ± 21.7%. Recovery varied based on morphology and color, with poorest recovery for fibers and the largest deviations for clear and white particles. Experience mattered; less experienced laboratories tended to report higher concentration and had a higher variance among replicates. Participants identified opportunity for increased accuracy and precision through training, improved color and morphology keys, and method alterations relevant to size fractionation. The resulting data informs future work, constraining and highlighting the value of microscopy for microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microscopia , Plásticos/análise , Polímeros , Cloreto de Polivinila/análise , Água/análise , Poluentes Químicos da Água/análise
12.
Appl Spectrosc ; 74(9): 976-988, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32285682

RESUMO

Automation and subsampling have been proposed as solutions to reduce the time required to quantify and characterize microplastics in samples using spectroscopy. However, there are methodological dilemmas associated with automation that are preventing its widespread implementation including ensuring particles stay adhered to the filter during filter mapping and developing an appropriate subsampling strategy to reduce the time needed for analysis. We provide a solution to the particle adherence issue by applying Skin Tac, a non-polymeric permeable adhesive that allows microplastic particles to adhere to the filter without having their Raman signal masked by the adhesive. We also explore different subsampling strategies to help inform how to take a representative subsample. Based on the particle distributions observed on filters, we determined that assuming a homogenous particle distribution is inappropriate and can lead to over- and under-estimations of extrapolated particle counts. Instead, we provide recommendations for future studies that wish to subsample to increase the throughput of samples for spectroscopic analysis.

13.
Appl Spectrosc ; 74(9): 1049-1065, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32893667

RESUMO

Researchers have been identifying microplastics in environmental samples dating back to the 1970s. Today, microplastics are a recognized environmental pollutant attracting a large amount of public and government attention, and in the last few years the number of scientific publications has grown exponentially. An underlying theme within this research field is to achieve a consensus for adopting a set of appropriate procedures to accurately identify and quantify microplastics within diverse matrices. These methods should then be harmonized to produce quantifiable data that is reproducible and comparable around the world. In addition, clear and concise guidelines for standard analytical protocols should be made available to researchers. In keeping with the theme of this special issue, the goals of this focal point review are to provide researchers with an overview of approaches to isolate and extract microplastics from different matrices, highlight associated methodological constraints and the necessary steps for conducting procedural controls and quality assurance. Simple samples, including water and sediments with low organic content, can be filtered and sieved. Stepwise procedures require density separation or digestion before filtration. Finally, complex matrices require more extensive steps with both digestion and density adjustments to assist plastic isolation. Implementing appropriate methods with a harmonized approach from sample collection to data analysis will allow comparisons across the research community.


Assuntos
Sedimentos Geológicos/química , Microplásticos , Poluentes Químicos da Água , Poluição Química da Água/análise , Qualidade da Água , Água/química , Filtração/métodos , Microplásticos/análise , Microplásticos/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
14.
Appl Spectrosc ; 74(9): 1139-1153, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394728

RESUMO

Microplastics are a diverse category of pollutants, comprising a range of constituent polymers modified by varying quantities of additives and sorbed pollutants, and exhibiting a range of morphologies, sizes, and visual properties. This diversity, as well as their microscopic size range, presents numerous barriers to identification and enumeration. These issues are addressed with the application of physical and chemical analytical procedures; however, these present new problems associated with researcher training, facility availability and cost, especially for large-scale monitoring programs. Perhaps more importantly, the classifications and nomenclature used by individual researchers to describe microplastics remains inconsistent. In addition to reducing comparability between studies, this limits the conclusions that may be drawn regarding plastic sources and potential environmental impacts. Additionally, where particle morphology data is presented, it is often separate from information on polymer distribution. In establishing a more rigorous and standardized visual identification procedure, it is possible to improve the targeting of complex analytical techniques and improve the standards by which we monitor and record microplastic contamination. Here we present a simple and effective protocol to enable consistent visual processing of samples with an aim to contribute to a higher degree of standardization within the microplastic scientific community. This protocol will not eliminate the need for non-subjective methods to verify plastic objects, but it will standardize the criteria by which suspected plastic items are identified and reduce the costs associated with further analysis.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Microplásticos/análise , Manejo de Espécimes/métodos , Poluentes Químicos da Água/análise , Água/química
15.
Appl Spectrosc ; 74(9): 989-1010, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32500727

RESUMO

Microplastic research is a rapidly developing field, with urgent needs for high throughput and automated analysis techniques. We conducted a review covering image analysis from optical microscopy, scanning electron microscopy, fluorescence microscopy, and spectral analysis from Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, pyrolysis gas-chromatography mass-spectrometry, and energy dispersive X-ray spectroscopy. These techniques were commonly used to collect, process, and interpret data from microplastic samples. This review outlined and critiques current approaches for analysis steps in image processing (color, thresholding, particle quantification), spectral processing (background and baseline subtraction, smoothing and noise reduction, data transformation), image classification (reference libraries, morphology, color, and fluorescence intensity), and spectral classification (reference libraries, matching procedures, and best practices for developing in-house reference tools). We highlighted opportunities to advance microplastic data analysis and interpretation by (i) quantifying colors, shapes, sizes, and surface topologies with image analysis software, (ii) identifying threshold values of particle characteristics in images that distinguish plastic particles from other particles, (iii) advancing spectral processing and classification routines, (iv) creating and sharing robust spectral libraries, (v) conducting double blind and negative controls, (vi) sharing raw data and analysis code, and (vii) leveraging readily available data to develop machine learning classification models. We identified analytical needs that we could fill and developed supplementary information for a reference library of plastic images and spectra, a tutorial for basic image analysis, and a code to download images from peer reviewed literature. Our major findings were that research on microplastics was progressing toward the use of multiple analytical methods and increasingly incorporating chemical classification. We suggest that new and repurposed methods need to be developed for high throughput screening using a diversity of approaches and highlight machine learning as one potential avenue toward this capability.

16.
Appl Spectrosc ; 74(9): 1066-1077, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394727

RESUMO

The ubiquitous pollution of the environment with microplastics, a diverse suite of contaminants, is of growing concern for science and currently receives considerable public, political, and academic attention. The potential impact of microplastics in the environment has prompted a great deal of research in recent years. Many diverse methods have been developed to answer different questions about microplastic pollution, from sources, transport, and fate in the environment, and about effects on humans and wildlife. These methods are often insufficiently described, making studies neither comparable nor reproducible. The proliferation of new microplastic investigations and cross-study syntheses to answer larger scale questions are hampered. This diverse group of 23 researchers think these issues can begin to be overcome through the adoption of a set of reporting guidelines. This collaboration was created using an open science framework that we detail for future use. Here, we suggest harmonized reporting guidelines for microplastic studies in environmental and laboratory settings through all steps of a typical study, including best practices for reporting materials, quality assurance/quality control, data, field sampling, sample preparation, microplastic identification, microplastic categorization, microplastic quantification, and considerations for toxicology studies. We developed three easy to use documents, a detailed document, a checklist, and a mind map, that can be used to reference the reporting guidelines quickly. We intend that these reporting guidelines support the annotation, dissemination, interpretation, reviewing, and synthesis of microplastic research. Through open access licensing (CC BY 4.0), these documents aim to increase the validity, reproducibility, and comparability of studies in this field for the benefit of the global community.


Assuntos
Microplásticos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/análise , Qualidade da Água , Água/química , Guias como Assunto , Reprodutibilidade dos Testes
17.
Environ Toxicol Chem ; 37(1): 91-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782833

RESUMO

Alkaline and wet peroxide oxidation chemical digestion techniques used to extract microplastics from organic matrices were assessed for recoveries and for impacts on ability to identify polymer types. Methods using wet peroxide oxidation generated enough heat to result in the complete loss of some types of microplastic particles, and boiling tests confirmed that temperatures >70 °C were responsible for the losses. Fourier transform infrared spectroscopy (FT-IR) confirmed minimal alteration of the recovered polymers by the applied methods. Environ Toxicol Chem 2018;37:91-98. © 2017 SETAC.


Assuntos
Química Orgânica/métodos , Plásticos/química , Temperatura , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
18.
Environ Toxicol Chem ; 33(4): 825-35, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375932

RESUMO

The present study isolated and identified compounds in heavy fuel oil 7102 (HFO 7102) that are bioavailable and chronically toxic to rainbow trout embryos (Oncorhynchus mykiss). An effects-driven chemical fractionation combined the chemical separation of oil with toxicity testing and chemical analyses of each fraction to identify the major classes of compounds associated with embryo toxicity. Toxicity was assessed with 2 exposure methods, a high-energy chemical dispersion of oil in water, which included oil droplets in test solutions, and water accommodated fractions which were produced by oiled gravel desorption columns, and which did not contain visible oil droplets. Fractions of HFO with high concentrations of naphthalenes, alkanes, asphaltenes, and resins were nontoxic to embryos over the range of concentrations tested. In contrast, fractions enriched with 3- to 4-ringed alkyl polycyclic aromatic hydrocarbons (PAHs) were embryotoxic, consistent with published studies of crude oils and individual alkyl PAHs. The rank order of fraction toxicity did not vary between the exposure methods and was consistent with their PAH content; fractions with higher-molecular weight alkyl PAHs were the most toxic. Exposure of juvenile trout to most fractions of HFO induced higher activities of cytochrome P450 enzymes, with a rank order of potency that varied with exposure method and differed somewhat from that of embryotoxicity. Induction reflected the bioavailability of PAHs but did not accurately predict embryotoxicity.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Óleos Combustíveis/toxicidade , Oncorhynchus mykiss/embriologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Fracionamento Químico , Citocromo P-450 CYP1A1/metabolismo , Proteínas de Peixes/metabolismo , Óleos Combustíveis/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa