RESUMO
Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics by increasing their bioavailability, providing programmable and controlled-release properties, and reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin B12). Vitamin B12 was chosen as a targeting ligand because it has its own absorption pathway in the small intestine. The resulting polysaccharide conjugates contained 95 µg/mg vitamin B12 and the CT content was 335 µg/mg; they consisted of particles of two sizes, 98 and 702 nm, with a ζ-potential of approximately -25 mV. An in vitro release test at pH 7.4 and pH 5.2 showed an ultra-slow release of colistin of approximately 1% after 10 h. The modified B12 conjugates retained their antimicrobial activity at the level of pure CT (minimum inhibitory concentration was 2 µg/mL). The resulting delivery systems also reduced the nephrotoxicity of CT by 30-40% (HEK 293 cell line). In addition, the modification of B12 improved the intestinal permeability of CT, and the apparent permeability coefficient of HA-CT-B12 conjugates was 3.5 × 10-6 cm/s, corresponding to an in vivo intestinal absorption of 50-100%. Thus, vitamin-B12-modified conjugates based on CT and HA may be promising oral delivery systems with improved biopharmaceutical properties.
Assuntos
Colistina , Ácido Hialurônico , Humanos , Colistina/farmacologia , Ácido Hialurônico/química , Células HEK293 , Vitamina B 12 , Sistemas de Liberação de Medicamentos/métodosRESUMO
Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 µg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 µg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.
Assuntos
Quitosana , Polieletrólitos/química , Quitosana/química , Portadores de Fármacos/química , Ácido Hialurônico , Colistina/farmacologia , Vitamina B 12 , Administração Oral , Antibacterianos/farmacologiaRESUMO
Exposure to nerve agents or organophosphorus (OP) pesticides can have life-threatening effects. Human plasma butyrylcholinesterase (BChE) inactivates these poisons by binding them to Ser198. After hours or days, these OP adducts acquire a negative charge by dealkylation in a process called aging. Our goal was to develop a method for enriching the aged adduct to facilitate detection of exposure. Human BChE inhibited by OP toxicants was incubated for 4 days to 6 years. Peptides produced by digestion with pepsin were enriched by binding to titanium oxide (TiO2) and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It was found that with two exceptions, all aged OP adducts in peptide FGES198AGAAS were enriched by binding to Titansphere tips. Cresyl saligenin phosphate yielded two types of aged adduct, cresylphosphate and phosphate, but only the phosphate adduct bound to Titansphere. The nerve agent VR yielded no aged adduct, supporting crystal structure findings that the VR adduct on BChE does not age. The irreversible nature of aged OP adducts was demonstrated by the finding that after 6 years at room temperature in sterile pH 7.0 buffer, the adducts were still detectable. It was concluded that TiO2 microcolumns can be used to enrich aged OP-modified BChE peptide.
Assuntos
Butirilcolinesterase/metabolismo , Organofosfatos/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Titânio/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Estrutura Molecular , Fatores de TempoRESUMO
Albumin is covalently modified by organophosphorus toxicants (OP) on tyrosine 411, but less than 1% of albumin is modified in humans by lethal OP doses that inhibit 95% of plasma butyrylcholinesterase. A method that enriches OP-modified albumin peptides could aid analysis of low dose exposures. Soman or chlorpyrifos oxon treated human plasma was digested with pepsin. Albumin peptides were enriched by binding to Fe(3+) beads at pH 11 and eluted with pH 2.6 buffer. Similarly, mouse and guinea pig albumin modified by chlorpyrifos oxon were digested with pepsin and enriched by binding to Fe(3+) beads. Peptides were identified by MALDI-TOF/TOF mass spectrometry. PHOS-select iron affinity beads specifically enriched albumin peptides VRY411TKKVPQVST and LVRY411TKKVPQVST in a pepsin digest of human plasma. The unmodified as well as OP-modified peptides bound to the beads. The binding capacity of 500 µL of beads was the pepsin digest of 2.1 µL of human plasma. The limit of detection was 0.2% of OP-modified albumin peptide in 0.43 µL of plasma. Enrichment of OP-modified albumin peptides by binding to Fe(3+) beads is a method with potential application to diagnosis of OP pesticide and nerve agent exposure in humans, mice, and guinea pigs.