Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fed Pract ; 38(Suppl 4): e72-e76, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35136344

RESUMO

Patients with poorly controlled diabetes mellitus and an infectious source can be predisposed to infectious aortitis.

2.
Redox Biol ; 18: 191-199, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30031267

RESUMO

DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF-16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation corresponded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep-1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1-/- primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genotoxic stress that is important for suppressing consequent oxidative stress. Correspondingly, dysregulation of DAF-16/FOXO3A appears to underpin shortened healthspan and lifespan, rather than the increased DNA damage burden itself.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Dano ao DNA , Fatores de Transcrição Forkhead/metabolismo , Longevidade , Estresse Oxidativo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa