Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9135-9146, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38754026

RESUMO

Reducing aviation emissions is important as they contribute to air pollution and climate change. Several alternative aviation fuels that may reduce life cycle emissions have been proposed. Comparative life cycle assessments (LCAs) of fuels are useful for inspecting individual fuels, but systemwide analysis remains difficult. Thus, systematic properties like fleet composition, performance, or emissions and changes to them under alternative fuels can only be partially addressed in LCAs. By integrating the geospatial fuel and emission model, AviTeam, with LCA, we can assess the mitigation potential of a fleetwide use of alternative aviation fuels on 210 000 shorter haul flights. In an optimistic case, liquid hydrogen (LH2) and power-to-liquid fuels, when produced with renewable electricity, may reduce emissions by about 950 GgCO2eq when assessed with the GWP100 metric and including non-CO2 impacts for all flights considered. Mitigation potentials range from 44% on shorter flights to 56% on longer flights. Alternative aviation fuels' mitigation potential is limited because of short-lived climate forcings and additional fuel demand to accommodate LH2 fuel. Our results highlight the importance of integrating system models into LCAs and are of value to researchers and decision-makers engaged in climate change mitigation in the aviation and transport sectors.


Assuntos
Aviação , Emissões de Veículos , Modelos Teóricos , Poluição do Ar , Mudança Climática , Poluentes Atmosféricos/análise
2.
Environ Sci Technol ; 55(22): 15040-15050, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34705455

RESUMO

Improving the robustness of maritime emission inventories is important to ensure we fully understand the point of embarkment for transformation pathways of the sector toward the 1.5 and 2°C targets. A bottom-up assessment of emissions of greenhouse gases and aerosols from the maritime sector is presented, accounting for the emissions from fuel production and processing, resulting in a complete "well-to-wake" geospatial inventory. This high-resolution inventory is developed through the use of the state-of-the-art data-driven MariTEAM model, which combines ship technical specifications, ship location data, and historical weather data. The CO2 emissions for 2017 amount to 943 million tonnes, which is 11% lower than the fourth International Maritime Organization's greenhouse gas study for the same year, while larger discrepancies have been found across ship segments. If fuel production is accounted for when developing shipping inventories, total CO2 emissions reported could increase by 11%. In addition to fuel production, effects of weather and heavy traffic regions were found to significantly impact emissions at global and regional levels. The global annual efficiency for different fuels and ship segments in approximated operational conditions were also investigated, indicating the need for more holistic metrics than current ones when seeking appropriate solutions aiming at reducing emissions.


Assuntos
Gases de Efeito Estufa , Navios , Aerossóis
4.
Sci Rep ; 14(1): 8965, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637552

RESUMO

Developing comprehensive scenarios for the shipping sector has been a challenge for the Integrated Assessment Model (IAMs) community, influencing how attainable decarbonization is in the sector, and for Earth System Models (ESMs), impacting the climate contribution of shipping emissions. Here we present an approach to develop spatially explicit energy demand projections for shipping in alignment with the Shared Socioeconomic Pathways framework and IAMs projections of global fossil fuel demand. Our results show that shipping could require between 14 and 20 EJ by 2050, corresponding to a 3% and 44% increase from 2018 for the SSP1-1.9 and SSP3-7.0 scenarios. Furthermore, the energy projections we present in this publication can be combined with different fuel mixes to derive emission inventories for climate modeling and, thus, improve our understanding of the various challenges in mitigating emissions for shipping. Through that, we aim to present a framework to incorporate detailed spatial shipping inventories and increase transparency for the scientific community.

5.
Nat Food ; 2(5): 373-381, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37117731

RESUMO

Solar geoengineering (SG) and CO2 emissions reduction can each alleviate anthropogenic climate change, but their impacts on food security are not yet fully understood. Using an advanced crop model within an Earth system model, we analysed the yield responses of six major crops to three SG technologies (SGs) and emissions reduction when they provide roughly the same reduction in radiative forcing and assume the same land use. We found sharply distinct yield responses to changes in radiation, moisture and CO2, but comparable significant cooling benefits for crop yields by all four methods. Overall, global yields increase ~10% under the three SGs and decrease 5% under emissions reduction, the latter primarily due to reduced CO2 fertilization, relative to business as usual by the late twenty-first century. Relative humidity dominates the hydrological effect on yields of rainfed crops, with little contribution from precipitation. The net insolation effect is negligible across all SGs, contrary to previous findings.

6.
Nat Commun ; 9(1): 3734, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213930

RESUMO

Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth's radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals.

7.
Sci Total Environ ; 532: 61-9, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26057725

RESUMO

Economic evaluations of solar radiation management (SRM) usually assume that the temperature will be stabilized, with no economic impacts of climate change, but with possible side-effects. We know from experiments with climate models, however, that unlike emission control the spatial and temporal distributions of temperature, precipitation and wind conditions will change. Hence, SRM may have economic consequences under a stabilization of global mean temperature even if side-effects other than those related to the climatic responses are disregarded. This paper addresses the economic impacts of implementing two SRM technologies; stratospheric sulfur injection and marine cloud brightening. By the use of a computable general equilibrium model, we estimate the economic impacts of climatic responses based on the results from two earth system models, MPI-ESM and NorESM. We find that under a moderately increasing greenhouse-gas concentration path, RCP4.5, the economic benefits of implementing climate engineering are small, and may become negative. Global GDP increases in three of the four experiments and all experiments include regions where the benefits from climate engineering are negative.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa