Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749703

RESUMO

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand mediated activation hindering myelin repair. Following chronic cuprizone induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) mediated degradation. Using ChAT reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and cuprizone demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin induced demyelination. In cuprizone demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following cuprizone demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.Significance Statement Demyelinating diseases like Multiple Sclerosis are characterized by failure of remyelination. Oligodendrocyte progenitor cell (OPC) recruitment and differentiation are crucial aspects for remyelination to occur. Here we show that increased acetylcholine (ACh) contributes to activation of muscarinic receptors that inhibit OPC differentiation. Increased choline acetyltransferase synthesis following demyelination was observed in axons and astrocytes suggestive of a potential for acetylcholine synthesis and release. The increase in ACh levels following demyelination was largely due to reduction of oligodendrocyte derived butyrylcholinesterase that modulates ACh concentration. Development of cell specific esterase stimulator to restore ACh levels may serve as an approach towards inhibiting ongoing demyelination and neurodegeneration.

2.
Glia ; 70(7): 1289-1300, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35275429

RESUMO

Mitochondria are abundant in the fine processes of astrocytes, however, potential roles for astrocyte mitochondria remain poorly understood. In the present study, we performed a systematic examination of the effects of abnormal oxidative phosphorylation in astrocytes on several mouse behaviors. Impaired astrocyte oxidative phosphorylation was produced by astrocyte-specific deletion of the nuclear mitochondrial gene, Cox10, that encodes an accessory protein of complex IV, the protoheme:heme-O-farnesyl transferase. As expected, conditional deletion of the Cox10 gene in mice (cKO mice) significantly reduced expression of COX10 and Cytochrome c oxidase subunit I (MTCO1) of Complex IV, resulting in decreased oxidative phosphorylation without significantly affecting glycolysis. No effects of the deletion were observed on locomotor activity, anxiety-like behavior, nociception, or spontaneous alternation. Cox10 cKO female mice exhibited mildly impaired novel object recognition, while Cox10 cKO male mice were moderately deficient in trace fear conditioning. No group-related changes were observed in conditional place preference (CPP) that assessed effects of morphine on reward. In contrast to CPP, Cox10 cKO mice demonstrated significantly increased aversive behaviors produced by naloxone-precipitated withdrawal following chronic exposure to morphine, that is, jumping and avoidance behavior as assessed by conditional place aversion (CPA). Our study suggests that astrocyte oxidative phosphorylation may contribute to behaviors associated with greater cognitive load and/or aversive and stressful conditions.


Assuntos
Alquil e Aril Transferases , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Alquil e Aril Transferases/metabolismo , Animais , Astrócitos/metabolismo , Medo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Morfina/metabolismo , Morfina/farmacologia , Dependência de Morfina/metabolismo , Dependência de Morfina/psicologia , Naloxona/metabolismo , Naloxona/farmacologia , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , Respiração , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
3.
Brain Behav Immun ; 99: 3-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547401

RESUMO

Viral infections during pregnancy are associated with increased incidence of psychiatric disorders in offspring. The pathological outcomes of viral infection appear to be caused by the deleterious effects of innate immune response-associated factors on development of the fetus, which predispose the offspring to pathological conditions in adulthood. The negative impact of viral infections varies substantially between pregnancies. Here, we explored whether differential stress sensitivity underlies the high heterogeneity of immune reactivity and whether this may influence the pathological consequences of maternal immune activation. Using mouse models of social dominance (Dom) and submissiveness (Sub), which possess innate features of stress resilience and vulnerability, respectively, we identified differential immune reactivity to the synthetic analogue of viral double-stranded RNA, Poly(I:C), in Sub and Dom nulliparous and pregnant females. More specifically, we found that Sub females showed an exacerbated pro- and anti-inflammatory cytokine response to Poly(I:C) as compared with Dom females. Sub offspring born to Sub mothers (stress sensitive offspring) showed enhanced locomotory response to the non-competitive NMDA antagonist, MK-801, which was potentiated by prenatal Poly(I:C) exposure. Our findings suggest that inherited stress sensitivity may lead to functional changes in glutamatergic signaling, which in turn is further exacerbated by prenatal exposure to viral-like infection. The maternal immunome seems to play a crucial role in these observed phenomena.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/fisiologia , Citocinas , Modelos Animais de Doenças , Feminino , Camundongos , Poli I-C/farmacologia , Gravidez
4.
Int J Eat Disord ; 54(4): 639-645, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368559

RESUMO

OBJECTIVE: Patients with Anorexia Nervosa (AN) display increased levels of oxidative stress that correlates with disease severity. Unfortunately, the biological ramifications of AN-induced oxidative stress on the brain are largely unknown. Our lab uses the preclinical activity-based anorexia (ABA) paradigm to model symptoms of AN. The goal of the present study was to determine how ABA experience affects oxidative state and its consequences in adolescent female rats. METHOD: We compared systemic glutathione and cysteine plasma concentrations and medial prefrontal cortex (mPFC) mitochondrial fission in ABA animals at maximum weight loss or following 10-days of weight recovery to levels in age-matched sedentary (SED) control rats. RESULTS: ABA animals at maximum weight loss had significantly lower plasma levels of cysteine and glutathione compared to SED controls. Additionally, ABA animals at max weight loss have significantly more mPFC mitochondrial fission. There were no significant differences in plasma analyte levels or mitochondrial fission between weight recovered ABA animals and SED controls. DISCUSSION: These data suggest that ABA experience results in oxidative stress that is remedied after weight restoration. The long-lasting ramifications of transient periods of increased oxidative stress are unknown and can lead to significant consequences on brain function and behavior.


Assuntos
Anorexia Nervosa , Anorexia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos , Redução de Peso
5.
Neurosci Biobehav Rev ; 152: 105310, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437753

RESUMO

Schizophrenia is a major psychotic disorder with multifactorial etiology that includes interactions between genetic vulnerability and environmental risk factors. In addition, interplay of multiple environmental adversities affects neurodevelopment and may increase the individual risk of developing schizophrenia. Consistent with the two-hit hypothesis of schizophrenia, we review rodent models that combine maternal immune activation as the first hit with other adverse environmental exposures as the second hit. We discuss the strengths and pitfalls of the current animal models of environment x environment interplay and propose some future directions to advance the field.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Animais , Interação Gene-Ambiente , Transtornos Psicóticos/genética , Esquizofrenia/complicações , Exposição Ambiental/efeitos adversos , Roedores
6.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408246

RESUMO

Astrocytes express mu/µ opioid receptors, but the function of these receptors remains poorly understood. We evaluated the effects of astrocyte-restricted knockout of µ opioid receptors on reward- and aversion-associated behaviors in mice chronically exposed to morphine. Specifically, one of the floxed alleles of the Oprm1 gene encoding µ opioid receptor 1 was selectively deleted from brain astrocytes in Oprm1 inducible conditional knockout (icKO) mice. These mice did not exhibit changes in locomotor activity, anxiety, or novel object recognition, or in their responses to the acute analgesic effects of morphine. Oprm1 icKO mice displayed increased locomotor activity in response to acute morphine administration but unaltered locomotor sensitization. Oprm1 icKO mice showed normal morphine-induced conditioned place preference but exhibited stronger conditioned place aversion associated with naloxone-precipitated morphine withdrawal. Notably, elevated conditioned place aversion lasted up to 6 weeks in Oprm1 icKO mice. Astrocytes isolated from the brains of Oprm1 icKO mice had unchanged levels of glycolysis but had elevated oxidative phosphorylation. The basal augmentation of oxidative phosphorylation in Oprm1 icKO mice was further exacerbated by naloxone-precipitated withdrawal from morphine and, similar to that for conditioned place aversion, was still present 6 weeks later. Our findings suggest that µ opioid receptors in astrocytes are linked to oxidative phosphorylation and they contribute to long-term changes associated with opioid withdrawal.


Assuntos
Astrócitos , Morfina , Camundongos , Animais , Morfina/efeitos adversos , Receptores Opioides , Antagonistas de Entorpecentes/farmacologia , Naloxona/farmacologia , Camundongos Knockout , Receptores Opioides mu/genética
7.
Neurosci Biobehav Rev ; 132: 603-620, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902440

RESUMO

Social interactions for many species of animals are critical for survival, wellbeing, and reproduction. Optimal navigation of a social system increases chances for survival and reproduction, therefore there is strong incentive to fit into social structures. Social animals rely heavily on dominant-submissive behaviors in establishment of stable social hierarchies. There is a link between extreme manifestation of dominance/submissiveness and behavioral deviations. To understand neural substrates affiliated with a specific hierarchical rank, there is a real need for reliable animal behavioral models. Different paradigms have been consolidated over time to study the neurobiology of social rank behavior in a standardized manner using rodent models to unravel the neural pathways and substrates involved in normal and abnormal intraspecific social interactions. This review summarizes and discusses the commonly used behavioral tests and new directions for the assessment of dominance in rodents. We discuss the hierarchy inheritable nature and other critical issues regarding hierarchical rank manifestation which may help in designing social-rank-related studies that serve as promising pre-clinical tools in behavioral psychiatry.


Assuntos
Hierarquia Social , Comportamento Social , Animais , Comportamento Animal , Reprodução , Roedores , Predomínio Social
8.
Sci Rep ; 12(1): 3647, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256610

RESUMO

Dittrichia viscosa is a perennial Mediterranean plant used in traditional medicine for "calming purposes", pointing at a possible antidepressant activity of the plant. We conducted chromatographic and bioassay-guided fractionation of D. viscosa root extract to isolate a specific fraction (fraction "K") with antidepressant-like characteristics in vivo and strong antioxidant properties in vitro. A single dose of "K" reduced immobility time in the forced swim test with a mouse model possessing a depressive-like phenotype. Neurochemical profiling for 5-hydroxytryptamine (5-HT) and its primary metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in prefrontal cortex and hippocampus of "K"-treated mice showed reduction in 5-HIAA, indicative of either serotonin uptake transporter or monoamine oxidase-A inhibition, as well as slight increases in 5-HT content. These neurochemical alterations, as well as the behavioral changes observed, were comparable to the effects of paroxetine. "K" also protected PC12 cells in a H2O2 cytotoxicity assay, thus demonstrating antioxidant properties, yet paroxetine augmented oxidative damage and cell death. Identification of the main compounds in "K" by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) indicated that chlorogenic acid and cynarine comprised 87% of the total components. D. viscosa root extract appears to produce antidepressant and cytoprotective effects and may serve as an attractive alternative to standard therapies for depression.


Assuntos
Asteraceae , Ácido Clorogênico , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antioxidantes/farmacologia , Asteraceae/química , Comportamento Animal , Ácido Clorogênico/farmacologia , Cinamatos , Peróxido de Hidrogênio/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Camundongos , Paroxetina , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina , Espectrometria de Massas em Tandem
9.
J Affect Disord ; 282: 1055-1066, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33601678

RESUMO

BACKGROUND: Dominant-submissive relationships depend upon functionality of the neural circuits involving monoaminergic neurotransmission. Behavioral profiles of selectively bred dominant (Dom) and submissive (Sub) mice have been proposed to mimic hyperthymic- or depressive-like temperaments observed in patients with affective disorders. These mice differentially respond to psychotropic agents and stressful stimuli, however, the mechanisms underlying these differences remain unclear. To address these mechanisms, we analyzed the brain monoamine content and responses to paroxetine (PXT) in Dom and Sub mice. METHODS: The behavioral effects of PXT (3 mg/kg, single injection) were assessed with the Elevated Plus Maze (EPM) and Forced Swim Test (FST). Monoamine tissue content was analyzed by HPLC-ECD. RESULTS: Compared to Dom, Sub mice had decreased levels of serotonin (5-HT) in the brainstem (BS), reduced levels of norepinephrine (NE) in the prefrontal cortex (PFC), hippocampus (HPC), and striatum (STR) and elevated levels of dopamine (DA) in PFC, HPC, STR and BS. In EPM, PXT administration increased locomotion and exploration in Dom mice, with no effect in Sub mice. In FST, PXT disrupted immobility in Dom mice only. The PXT-produced differences in regional monoamine content were strain-dependent and consistent with the behavioral alterations. LIMITATIONS: Chronic PXT treatment, in vivo monoamine assays and sex-dependent analysis were out of the scope of this study and will be performed in the future in order to provide an in-depth evaluation of the neurochemical mechanisms underlying temperament-dependent responses to SSRIs. CONCLUSIONS: Our findings suggest neurochemical mechanisms that underlie temperament-based response to antidepressant treatment.


Assuntos
Neuroquímica , Temperamento , Animais , Comportamento Animal , Encéfalo , Humanos , Camundongos , Comportamento Social
10.
Genet Res Int ; 2019: 2483270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885928

RESUMO

Tobacco smoking is known to be a strong risk factor for developing many diseases. The development and severity of smoking dependence results from interaction of environmental and lifestyle factors, psycho-emotional predispositions, and also from genetic susceptibility. In present study, we investigated polymorphic variants in genes contributed to nicotine dependence, as well as to increased impulsivity, known to be an important risk factor for substance use disorders, in Ukraine population. The genotype frequencies at CYP2A6, DNMT3B, DRD2, HTR2A, COMT, BDNF, GABRA2, CHRNA5, and DAT1 polymorphisms were determined in 171 Ukraine residents, and these data were compared with data for several other European populations and main ethnic groups. It has been found that genotype frequencies for all studied loci are in Hardy-Weinberg equilibrium in the Ukrainian population and correspond to the respective frequencies in European populations. These findings suggest a similar impact of these loci on nicotine dependence in Ukraine. Further studies with larger sample sizes are, however, needed to draw firm conclusions about the effect size of these polymorphisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa