Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 38(8): 2712-26, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20211838

RESUMO

Synthetic gene networks can be used to control gene expression and cellular phenotypes in a variety of applications. In many instances, however, such networks can behave unreliably due to gene expression noise. Accordingly, there is a need to develop systematic means to tune gene expression noise, so that it can be suppressed in some cases and harnessed in others, e.g. in cellular differentiation to create population-wide heterogeneity. Here, we present a method for controlling noise in synthetic eukaryotic gene expression systems, utilizing reduction of noise levels by TATA box mutations and noise propagation in transcriptional cascades. Specifically, we introduce TATA box mutations into promoters driving TetR expression and show that these mutations can be used to effectively tune the noise of a target gene while decoupling it from the mean, with negligible effects on the dynamic range and basal expression. We apply mathematical and computational modeling to explain the experimentally observed effects of TATA box mutations. This work, which highlights some important aspects of noise propagation in gene regulatory cascades, has practical implications for implementing gene expression control in synthetic gene networks.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Sintéticos , Transcrição Gênica , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , TATA Box , Transativadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(13): 5123-8, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19279212

RESUMO

Although several recent studies have focused on gene autoregulation, the effects of negative feedback (NF) on gene expression are not fully understood. Our purpose here was to determine how the strength of NF regulation affects the characteristics of gene expression in yeast cells harboring chromosomally integrated transcriptional cascades that consist of the yEGFP reporter controlled by (i) the constitutively expressed tetracycline repressor TetR or (ii) TetR repressing its own expression. Reporter gene expression in the cascade without feedback showed a steep (sigmoidal) dose-response and a wide, nearly bimodal yEGFP distribution, giving rise to a noise peak at intermediate levels of induction. We developed computational models that reproduced the steep dose-response and the noise peak and predicted that negative autoregulation changes reporter expression from bimodal to unimodal and transforms the dose-response from sigmoidal to linear. Prompted by these predictions, we constructed a "linearizer" circuit by adding TetR autoregulation to our original cascade and observed a massive (7-fold) reduction of noise at intermediate induction and linearization of dose-response before saturation. A simple mathematical argument explained these findings and indicated that linearization is highly robust to parameter variations. These findings have important implications for gene expression control in eukaryotic cells, including the design of synthetic expression systems.


Assuntos
Retroalimentação Fisiológica/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Biologia Computacional , Simulação por Computador , Proteínas Repressoras , Tetraciclina , Transcrição Gênica
3.
Genome Biol ; 12(12): R125, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22189060

RESUMO

BACKGROUND: Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. RESULTS: We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. CONCLUSIONS: The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles.


Assuntos
DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Reguladores/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA/genética , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Análise Serial de Proteínas , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 104(31): 12726-31, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17652177

RESUMO

Understanding the behavior of basic biomolecular components as parts of larger systems is one of the goals of the developing field of synthetic biology. A multidisciplinary approach, involving mathematical and computational modeling in parallel with experimentation, is often crucial for gaining such insights and improving the efficiency of artificial gene network design. Here we used such an approach and developed a combinatorial promoter design strategy to characterize how the position and multiplicity of tetO(2) operator sites within the GAL1 promoter affect gene expression levels and gene expression noise in Saccharomyces cerevisiae. We observed stronger transcriptional repression and higher gene expression noise as a single operator site was moved closer to the TATA box, whereas for multiple operator-containing promoters, we found that the position and number of operator sites together determined the dose-response curve and gene expression noise. We developed a generic computational model that captured the experimentally observed differences for each of the promoters, and more detailed models to successively predict the behavior of multiple operator-containing promoters from single operator-containing promoters. Our results suggest that the independent binding of single repressors is not sufficient to explain the more complex behavior of the multiple operator-containing promoters. Taken together, our findings highlight the importance of joint experimental-computational efforts and some of the challenges of using a bottom-up approach based on well characterized, isolated biomolecular components for predicting the behavior of complex, synthetic gene networks, e.g., the whole can be different from the sum of its parts.


Assuntos
Expressão Gênica/genética , Engenharia Genética/métodos , Regiões Promotoras Genéticas/genética , Sítios de Ligação , Simulação por Computador , Modelos Biológicos , Proteínas Repressoras/metabolismo
5.
Mol Cell ; 24(6): 853-65, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17189188

RESUMO

A more complete understanding of the causes and effects of cell-cell variability in gene expression is needed to elucidate whether the resulting phenotypes are disadvantageous or confer some adaptive advantage. Here we show that increased variability in gene expression, affected by the sequence of the TATA box, can be beneficial after an acute change in environmental conditions. We rationally introduce mutations within the TATA region of an engineered Saccharomyces cerevisiae GAL1 promoter and measure promoter responses that can be characterized as being either highly variable and rapid or steady and slow. We computationally illustrate how a stable transcription scaffold can result in "bursts" of gene expression, enabling rapid individual cell responses in the transient and increased cell-cell variability at steady state. We experimentally verify computational predictions that the rapid response and increased cell-cell variability enabled by TATA-containing promoters confer a clear benefit in the face of an acute environmental stress.


Assuntos
Simulação por Computador , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Heterogeneidade Genética , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , TATA Box/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa