Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bull Math Biol ; 85(10): 89, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646851

RESUMO

Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established method for analyzing intracellular communications over the last few decades. What's more, BNs provide a course-grained approach, not only to understanding molecular communications, but also for targeting pathway components that alter the long-term outcomes of the system. This has come to be known as phenotype control theory. In this review we study the interplay of various approaches for controlling gene regulatory networks such as: algebraic methods, control kernel, feedback vertex set, and stable motifs. The study will also include comparative discussion between the methods, using an established cancer model of T-Cell Large Granular Lymphocyte Leukemia. Further, we explore possible options for making the control search more efficient using reduction and modularity. Finally, we will include challenges presented such as the complexity and the availability of software for implementing each of these control techniques.


Assuntos
Redes Reguladoras de Genes , Conceitos Matemáticos , Modelos Biológicos , Fenótipo , Software
2.
J Theor Biol ; 548: 111197, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35752283

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is widely known for its poor prognosis because it is often diagnosed when the cancer is in a later stage. We built a Boolean model to analyze the microenvironment of pancreatic cancer in order to better understand the interplay between pancreatic cancer, stellate cells, and their signaling cytokines. Specifically, we have used our model to study the impact of inducing four common mutations: KRAS, TP53, SMAD4, and CDKN2A. After implementing the various mutation combinations, we used our stochastic simulator to derive aggressiveness scores based on simulated attractor probabilities and long-term trajectory approximations. These aggression scores were then corroborated with clinical data. Moreover, we found sets of control targets that are effective among common mutations. These control sets contain nodes within both the pancreatic cancer cell and the pancreatic stellate cell, including PIP3, RAF, PIK3 and BAX in pancreatic cancer cell as well as ERK and PIK3 in the pancreatic stellate cell. Many of these nodes were found to be differentially expressed among pancreatic cancer patients in the TCGA database. Furthermore, literature suggests that many of these nodes can be targeted by drugs currently in circulation. The results herein help provide a proof of concept in the path towards personalized medicine through a means of mathematical systems biology. All data and code used for running simulations, statistical analysis, and plotting is available on a GitHub repository athttps://github.com/drplaugher/PCC_Mutations.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética , Neoplasias Pancreáticas
3.
PLoS Comput Biol ; 17(3): e1008690, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780439

RESUMO

Candida albicans, an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C. albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C. albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C. albicans yeast to hyphal transition, integrating multiple environmental factors and regulatory mechanisms. We validate the model by a systematic comparison to prior experiments, which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative hypotheses that are testable by follow-up experiments. Analysis of this model revealed two time-constrained windows of opportunity that must be met for the complete transition from the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this transition. We experimentally validate two of these control predictions in C. albicans strains lacking the transcription factor UME6 and the histone deacetylase HDA1, respectively. This model will serve as a strong base from which to develop a systems biology understanding of C. albicans morphogenesis.


Assuntos
Candida albicans , Hifas , Modelos Biológicos , Candida albicans/genética , Candida albicans/fisiologia , Hifas/genética , Hifas/fisiologia , Morfogênese/genética , Morfogênese/fisiologia , Fenótipo , Biologia de Sistemas
4.
Bull Math Biol ; 83(11): 115, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633559

RESUMO

Pancreatic ductal adenocarcinoma is among the leading causes of cancer-related deaths globally due to its extreme difficulty to detect and treat. Recently, research focus has shifted to analyzing the microenvironment of pancreatic cancer to better understand its key molecular mechanisms. This microenvironment can be represented with a multi-scale model consisting of pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs), as well as cytokines and growth factors which are responsible for intercellular communication between the PCCs and PSCs. We have built a stochastic Boolean network (BN) model, validated by literature and clinical data, in which we probed for intervention strategies that force this gene regulatory network (GRN) from a diseased state to a healthy state. To do so, we implemented methods from phenotype control theory to determine a procedure for regulating specific genes within the microenvironment. We identified target genes and molecules, such that the application of their control drives the GRN to the desired state by suppression (or expression) and disruption of specific signaling pathways that may eventually lead to the eradication of the cancer cells. After applying well-studied control methods such as stable motifs, feedback vertex sets, and computational algebra, we discovered that each produces a different set of control targets that are not necessarily minimal nor unique. Yet, we were able to gain more insight about the performance of each process and the overlap of targets discovered. Nearly every control set contains cytokines, KRas, and HER2/neu, which suggests they are key players in the system's dynamics. To that end, this model can be used to produce further insight into the complex biological system of pancreatic cancer with hopes of finding new potential targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Conceitos Matemáticos , Neoplasias Pancreáticas/genética , Microambiente Tumoral
5.
Bull Math Biol ; 82(1): 2, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31919596

RESUMO

Many problems in biology and medicine have a control component. Often, the goal might be to modify intracellular networks, such as gene regulatory networks or signaling networks, in order for cells to achieve a certain phenotype, what happens in cancer. If the network is represented by a mathematical model for which mathematical control approaches are available, such as systems of ordinary differential equations, then this problem might be solved systematically. Such approaches are available for some other model types, such as Boolean networks, where structure-based approaches have been developed, as well as stable motif techniques. However, increasingly many published discrete models are mixed-state or multistate, that is, some or all variables have more than two states, and thus the development of control strategies for multistate networks is needed. This paper presents a control approach broadly applicable to general multistate models based on encoding them as polynomial dynamical systems over a finite algebraic state set, and using computational algebra for finding appropriate intervention strategies. To demonstrate the feasibility and applicability of this method, we apply it to a recently developed multistate intracellular model of E2F-mediated bladder cancerous growth and to a model linking intracellular iron metabolism and oncogenic pathways. The control strategies identified for these published models are novel in some cases and represent new hypotheses, or are supported by the literature in others as potential drug targets. Our Macaulay2 scripts to find control strategies are publicly available through GitHub at https://github.com/luissv7/multistatepdscontrol.


Assuntos
Redes Reguladoras de Genes , Modelos Biológicos , Biologia de Sistemas , Algoritmos , Conceitos Matemáticos , Matemática , Transdução de Sinais , Biologia de Sistemas/métodos
6.
Biophys J ; 113(2): 321-329, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28629618

RESUMO

Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to be "ill conditioned" in that small changes to the thermodynamic model can result in significantly different optimal structures. Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures. Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robustness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for conditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences are at least sample robust, which verifies the assumption of sampling's improved conditioning over the MFE prediction. Furthermore, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction methods beyond the physics-based ones.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , RNA , Termodinâmica , RNA/química , Processos Estocásticos
7.
NPJ Syst Biol Appl ; 10(1): 74, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003264

RESUMO

There is increasing evidence that biological systems are modular in both structure and function. Complex biological signaling networks such as gene regulatory networks (GRNs) are proving to be composed of subcategories that are interconnected and hierarchically ranked. These networks contain highly dynamic processes that ultimately dictate cellular function over time, as well as influence phenotypic fate transitions. In this work, we use a stochastic multicellular signaling network of pancreatic cancer (PC) to show that the variance in topological rankings of the most phenotypically influential modules implies a strong relationship between structure and function. We further show that induction of mutations alters the modular structure, which analogously influences the aggression and controllability of the disease in silico. We finally present evidence that the impact and location of mutations with respect to PC modular structure directly corresponds to the efficacy of single agent treatments in silico, because topologically deep mutations require deep targets for control.


Assuntos
Redes Reguladoras de Genes , Mutação , Neoplasias Pancreáticas , Transdução de Sinais , Humanos , Mutação/genética , Neoplasias Pancreáticas/genética , Redes Reguladoras de Genes/genética , Transdução de Sinais/genética , Biologia Computacional/métodos , Simulação por Computador , Neoplasias/genética
8.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38352601

RESUMO

There is increasing evidence that biological systems are modular in both structure and function. Complex biological signaling networks such as gene regulatory networks (GRNs) are proving to be composed of subcategories that are interconnected and hierarchically ranked. These networks contain highly dynamic processes that ultimately dictate cellular function over time, as well as influence phenotypic fate transitions. In this work, we use a stochastic multicellular signaling network of pancreatic cancer (PC) to show that the variance in topological rankings of the most phenotypically influential modules implies a strong relationship between structure and function. We further show that induction of mutations alters the modular structure, which analogously influences the aggression and controllability of the disease in silico. We finally present evidence that the impact and location of mutations with respect to PC modular structure directly corresponds to the efficacy of single agent treatments in silico, because topologically deep mutations require deep targets for control.

9.
NPJ Syst Biol Appl ; 10(1): 67, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871768

RESUMO

Biological networks, such as gene regulatory networks, possess desirable properties. They are more robust and controllable than random networks. This motivates the search for structural and dynamical features that evolution has incorporated into biological networks. A recent meta-analysis of published, expert-curated Boolean biological network models has revealed several such features, often referred to as design principles. Among others, the biological networks are enriched for certain recurring network motifs, the dynamic update rules are more redundant, more biased, and more canalizing than expected, and the dynamics of biological networks are better approximable by linear and lower-order approximations than those of comparable random networks. Since most of these features are interrelated, it is paramount to disentangle cause and effect, that is, to understand which features evolution actively selects for, and thus truly constitute evolutionary design principles. Here, we compare published Boolean biological network models with different ensembles of null models and show that the abundance of canalization in biological networks can almost completely explain their recently postulated high approximability. Moreover, an analysis of random N-K Kauffman models reveals a strong dependence of approximability on the dynamical robustness of a network.


Assuntos
Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Modelos Biológicos , Algoritmos , Biologia Computacional/métodos , Dinâmica não Linear , Biologia de Sistemas/métodos , Humanos
10.
ArXiv ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38344220

RESUMO

The concept of control is central to understanding and applications of biological network models. Some of their key structural features relate to control functions, through gene regulation, signaling, or metabolic mechanisms, and computational models need to encode these. Applications of models often focus on model-based control, such as in biomedicine or metabolic engineering. This paper presents an approach to model-based control that exploits two common features of biological networks, namely their modular structure and canalizing features of their regulatory mechanisms. The paper focuses on intracellular regulatory networks, represented by Boolean network models. A main result of this paper is that control strategies can be identified by focusing on one module at a time. This paper also presents a criterion based on canalizing features of the regulatory rules to identify modules that do not contribute to network control and can be excluded. For even moderately sized networks, finding global control inputs is computationally very challenging. The modular approach presented here leads to a highly efficient approach to solving this problem. This approach is applied to a published Boolean network model of blood cancer large granular lymphocyte (T-LGL) leukemia to identify a minimal control set that achieves a desired control objective.

11.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131770

RESUMO

Modeling cell signal transduction pathways via Boolean networks (BNs) has become an established method for analyzing intracellular communications over the last few decades. What’s more, BNs provide a course-grained approach, not only to understanding molecular communications, but also for targeting pathway components that alter the long-term outcomes of the system. This has come to be known as phenotype control theory . In this review we study the interplay of various approaches for controlling gene regulatory networks such as: algebraic methods, control kernel, feedback vertex set, and stable motifs. The study will also include comparative discussion between the methods, using an established cancer model of T-Cell Large Granular Lymphocyte (T-LGL) Leukemia. Further, we explore possible options for making the control search more efficient using reduction and modularity. Finally, we will include challenges presented such as the complexity and the availability of software for implementing each of these control techniques.

12.
NPJ Syst Biol Appl ; 9(1): 10, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015937

RESUMO

The extent to which the components of a biological system are (non)linearly regulated determines how amenable they are to therapy and control. To better understand this property termed "regulatory nonlinearity", we analyzed a suite of 137 published Boolean network models, containing a variety of complex nonlinear regulatory interactions, using a probabilistic generalization of Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation, we used Taylor decomposition to approximate the models with various levels of regulatory nonlinearity. A comparison of the resulting series of approximations of the biological models with appropriate random ensembles revealed that biological regulation tends to be less nonlinear than expected, meaning that higher-order interactions among the regulatory inputs tend to be less pronounced. A further categorical analysis of the biological models revealed that the regulatory nonlinearity of cancer and disease networks could not only be sometimes higher than expected but also be relatively more variable. We show that this variation is caused by differences in the apportioning of information among the various orders of regulatory nonlinearity. Our results suggest that there may have been a weak but discernible selection pressure for biological systems to evolve linear regulation on average, but for certain systems such as cancer, on the other hand, to simultaneously evolve more nonlinear rules.


Assuntos
Modelos Biológicos , Dinâmica não Linear
13.
J R Soc Interface ; 20(207): 20230505, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37876275

RESUMO

This paper addresses two topics in systems biology, the hypothesis that biological systems are modular and the problem of relating structure and function of biological systems. The focus here is on gene regulatory networks, represented by Boolean network models, a commonly used tool. Most of the research on gene regulatory network modularity has focused on network structure, typically represented through either directed or undirected graphs. But since gene regulation is a highly dynamic process as it determines the function of cells over time, it is natural to consider functional modularity as well. One of the main results is that the structural decomposition of a network into modules induces an analogous decomposition of the dynamic structure, exhibiting a strong relationship between network structure and function. An extensive simulation study provides evidence for the hypothesis that modularity might have evolved to increase phenotypic complexity while maintaining maximal dynamic robustness to external perturbations.


Assuntos
Redes Reguladoras de Genes , Biologia de Sistemas , Simulação por Computador , Modelos Biológicos
14.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745485

RESUMO

This paper addresses two topics in systems biology, the hypothesis that biological systems are modular and the problem of relating structure and function of biological systems. The focus here is on gene regulatory networks, represented by Boolean network models, a commonly used tool. Most of the research on gene regulatory network modularity has focused on network structure, typically represented through either directed or undirected graphs. But since gene regulation is a highly dynamic process as it determines the function of cells over time, it is natural to consider functional modularity as well. One of the main results is that the structural decomposition of a network into modules induces an analogous decomposition of the dynamic structure, exhibiting a strong relationship between network structure and function. An extensive simulation study provides evidence for the hypothesis that modularity might have evolved to increase phenotypic complexity while maintaining maximal dynamic robustness to external perturbations.

15.
Patterns (N Y) ; 3(11): 100617, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36419439

RESUMO

Building predictive models from data is an important and challenging task in many fields including biology, medicine, engineering, and economy. In this issue, Sun et al.1 present a method for the inference of Boolean networks along with practical applications.

16.
J Theor Biol ; 288: 66-72, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21872607

RESUMO

Understanding design principles of molecular interaction networks is an important goal of molecular systems biology. Some insights have been gained into features of their network topology through the discovery of graph theoretic patterns that constrain network dynamics. This paper contributes to the identification of patterns in the mechanisms that govern network dynamics. The control of nodes in gene regulatory, signaling, and metabolic networks is governed by a variety of biochemical mechanisms, with inputs from other network nodes that act additively or synergistically. This paper focuses on a certain type of logical rule that appears frequently as a regulatory pattern. Within the context of the multistate discrete model paradigm, a rule type is introduced that reduces to the concept of nested canalyzing function in the Boolean network case. It is shown that networks that employ this type of multivalued logic exhibit more robust dynamics than random networks, with few attractors and short limit cycles. It is also shown that the majority of regulatory functions in many published models of gene regulatory and signaling networks are nested canalyzing.


Assuntos
Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Modelos Genéticos , Animais , Simulação por Computador , Redes e Vias Metabólicas/genética , Transdução de Sinais/genética
17.
Bull Math Biol ; 73(7): 1583-602, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20878493

RESUMO

Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models, it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis. This mathematical framework can also accommodate other model types such as Boolean networks and the more general logical models, as well as Petri nets.


Assuntos
Biologia/métodos , Modelos Biológicos
18.
Trends Ecol Evol ; 36(1): 49-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829916

RESUMO

Cellular differentiation is one of the hallmarks of complex multicellularity, allowing individual organisms to capitalize on among-cell functional diversity. The evolution of multicellularity is a major evolutionary transition that allowed for the increase of organismal complexity in multiple lineages, a process that relies on the functional integration of cell-types within an individual. Multiple hypotheses have been proposed to explain the origins of cellular differentiation, but we lack a general understanding of what makes one cell-type distinct from others, and how such differentiation arises. Here, we describe how the use of Boolean networks (BNs) can aid in placing empirical findings into a coherent conceptual framework, and we emphasize some of the standing problems when interpreting data and model behaviors.


Assuntos
Evolução Biológica , Diferenciação Celular
19.
Front Cell Dev Biol ; 9: 767377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036404

RESUMO

New patterns of gene expression are enacted and regulated during tissue regeneration. Histone deacetylases (HDACs) regulate gene expression by removing acetylated lysine residues from histones and proteins that function directly or indirectly in transcriptional regulation. Previously we showed that romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Here, we report on the concentration-dependent effect of romidepsin on transcription and regeneration outcome, introducing an experimental and conceptual framework for investigating small molecule mechanisms of action. A range of romidepsin concentrations (0-10 µM) were administered from 0 to 6 or 0 to 12 h post amputation (HPA) and distal tail tip tissue was collected for gene expression analysis. Above a threshold concentration, romidepsin potently inhibited regeneration. Sigmoidal and biphasic transcription response curve modeling identified genes with inflection points aligning to the threshold concentration defining regenerative failure verses success. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Genes that associate with oxidative stress, negative regulation of cell signaling, negative regulation of cell cycle progression, and cellular differentiation were increased, while genes that are typically up-regulated during appendage regeneration were decreased, including genes expressed by fibroblast-like progenitor cells. Using single-nuclei RNA-Seq at 6 HPA, we found that key genes were altered by romidepin in the same direction across multiple cell types. Our results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes.

20.
Lett Biomath ; 7(1): 67-80, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34141873

RESUMO

One of the ultimate goals in systems biology is to develop control strategies to find efficient medical treatments. One step towards this goal is to develop methods for changing the state of a cell into a desirable state. We propose an efficient method that determines combinations of network perturbations to direct the system towards a predefined state. The method requires a set of control actions such as the silencing of a gene or the disruption of the interaction between two genes. An optimal control policy defined as the best intervention at each state of the system can be obtained using existing methods. However, these algorithms are computationally prohibitive for models with tens of nodes. Our method generates control actions that approximates the optimal control policy with high probability with a computational efficiency that does not depend on the size of the state space. Our C++ code is available at https://github.com/boaguilar/SDDScontrol.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa