Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520359

RESUMO

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Autopsia , Algoritmos
3.
Cereb Cortex ; 33(4): 1058-1073, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348659

RESUMO

Socioeconomic status (SES) can impact cognitive performance, including working memory (WM). As executive systems that support WM undergo functional neurodevelopment during adolescence, environmental stressors at both individual and community levels may influence cognitive outcomes. Here, we sought to examine how SES at the neighborhood and family level impacts task-related activation of the executive system during adolescence and determine whether this effect mediates the relationship between SES and WM performance. To address these questions, we studied 1,150 youths (age 8-23) that completed a fractal n-back WM task during functional magnetic resonance imaging at 3T as part of the Philadelphia Neurodevelopmental Cohort. We found that both higher neighborhood SES and parental education were associated with greater activation of the executive system to WM load, including the bilateral dorsolateral prefrontal cortex, posterior parietal cortex, and precuneus. The association of neighborhood SES remained significant when controlling for task performance, or related factors like exposure to traumatic events. Furthermore, high-dimensional multivariate mediation analysis identified distinct patterns of brain activity within the executive system that significantly mediated the relationship between measures of SES and task performance. These findings underscore the importance of multilevel environmental factors in shaping executive system function and WM in youth.


Assuntos
Função Executiva , Memória de Curto Prazo , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Memória de Curto Prazo/fisiologia , Função Executiva/fisiologia , Escolaridade , Pais , Imageamento por Ressonância Magnética/métodos , Classe Social , Encéfalo/fisiologia
4.
Neuroimage ; 271: 120037, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36931330

RESUMO

Diffusion MRI is the dominant non-invasive imaging method used to characterize white matter organization in health and disease. Increasingly, fiber-specific properties within a voxel are analyzed using fixels. While tools for conducting statistical analyses of fixel-wise data exist, currently available tools support only a limited number of statistical models. Here we introduce ModelArray, an R package for mass-univariate statistical analysis of fixel-wise data. At present, ModelArray supports linear models as well as generalized additive models (GAMs), which are particularly useful for studying nonlinear effects in lifespan data. In addition, ModelArray also aims for scalable analysis. With only several lines of code, even large fixel-wise datasets can be analyzed using a standard personal computer. Detailed memory profiling revealed that ModelArray required only limited memory even for large datasets. As an example, we applied ModelArray to fixel-wise data derived from diffusion images acquired as part of the Philadelphia Neurodevelopmental Cohort (n = 938). ModelArray revealed anticipated nonlinear developmental effects in white matter. Moving forward, ModelArray is supported by an open-source software development model that can incorporate additional statistical models and other imaging data types. Taken together, ModelArray provides a flexible and efficient platform for statistical analysis of fixel-wise data.


Assuntos
Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Software , Projetos de Pesquisa , Modelos Estatísticos
5.
Neuroimage ; 263: 119609, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064140

RESUMO

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was designed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address these challenges, we created a Python-based software package titled "Curation of BIDS" (CuBIDS), which provides an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad--a version control software package for data--as an optional dependency to ensure reproducibility and provenance tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on their images' metadata and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on a subset of participants that represent the full range of acquisition parameters that are present, accelerating pipeline testing on large datasets.


Assuntos
Ecossistema , Software , Humanos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Neuroimagem/métodos
6.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865219

RESUMO

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of twenty-six participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n=20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.

7.
Neuropsychopharmacology ; 47(9): 1662-1671, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660803

RESUMO

Mapping individual differences in behavior is fundamental to personalized neuroscience, but quantifying complex behavior in real world settings remains a challenge. While mobility patterns captured by smartphones have increasingly been linked to a range of psychiatric symptoms, existing research has not specifically examined whether individuals have person-specific mobility patterns. We collected over 3000 days of mobility data from a sample of 41 adolescents and young adults (age 17-30 years, 28 female) with affective instability. We extracted summary mobility metrics from GPS and accelerometer data and used their covariance structures to identify individuals and calculated the individual identification accuracy-i.e., their "footprint distinctiveness". We found that statistical patterns of smartphone-based mobility features represented unique "footprints" that allow individual identification (p < 0.001). Critically, mobility footprints exhibited varying levels of person-specific distinctiveness (4-99%), which was associated with age and sex. Furthermore, reduced individual footprint distinctiveness was associated with instability in affect (p < 0.05) and circadian patterns (p < 0.05) as measured by environmental momentary assessment. Finally, brain functional connectivity, especially those in the somatomotor network, was linked to individual differences in mobility patterns (p < 0.05). Together, these results suggest that real-world mobility patterns may provide individual-specific signatures relevant for studies of development, sleep, and psychopathology.


Assuntos
Afeto , Sono , Adolescente , Adulto , Encéfalo , Feminino , Humanos , Psicopatologia , Smartphone , Adulto Jovem
8.
Nat Commun ; 13(1): 2647, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551181

RESUMO

The brain is organized into networks at multiple resolutions, or scales, yet studies of functional network development typically focus on a single scale. Here, we derive personalized functional networks across 29 scales in a large sample of youths (n = 693, ages 8-23 years) to identify multi-scale patterns of network re-organization related to neurocognitive development. We found that developmental shifts in inter-network coupling reflect and strengthen a functional hierarchy of cortical organization. Furthermore, we observed that scale-dependent effects were present in lower-order, unimodal networks, but not higher-order, transmodal networks. Finally, we found that network maturation had clear behavioral relevance: the development of coupling in unimodal and transmodal networks are dissociably related to the emergence of executive function. These results suggest that the development of functional brain networks align with and refine a hierarchy linked to cognition.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Cognição , Função Executiva , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Adulto Jovem
9.
Front Neuroinform ; 15: 678403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239433

RESUMO

The recent and growing focus on reproducibility in neuroimaging studies has led many major academic centers to use cloud-based imaging databases for storing, analyzing, and sharing complex imaging data. Flywheel is one such database platform that offers easily accessible, large-scale data management, along with a framework for reproducible analyses through containerized pipelines. The Brain Imaging Data Structure (BIDS) is the de facto standard for neuroimaging data, but curating neuroimaging data into BIDS can be a challenging and time-consuming task. In particular, standard solutions for BIDS curation are limited on Flywheel. To address these challenges, we developed "FlywheelTools," a software toolbox for reproducible data curation and manipulation on Flywheel. FlywheelTools includes two elements: fw-heudiconv, for heuristic-driven curation of data into BIDS, and flaudit, which audits and inventories projects on Flywheel. Together, these tools accelerate reproducible neuroscience research on the widely used Flywheel platform.

10.
Dev Cogn Neurosci ; 43: 100788, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510347

RESUMO

Diffusion weighted imaging (DWI) has advanced our understanding of brain microstructure evolution over development. Recently, the use of multi-shell diffusion imaging sequences has coincided with advances in modeling the diffusion signal, such as Neurite Orientation Dispersion and Density Imaging (NODDI) and Laplacian-regularized Mean Apparent Propagator MRI (MAPL). However, the relative utility of recently-developed diffusion models for understanding brain maturation remains sparsely investigated. Additionally, despite evidence that motion artifact is a major confound for studies of development, the vulnerability of metrics derived from contemporary models to in-scanner motion has not been described. Accordingly, in a sample of 120 youth and young adults (ages 12-30) we evaluated metrics derived from diffusion tensor imaging (DTI), NODDI, and MAPL for associations with age and in-scanner head motion at multiple scales. Specifically, we examined mean white matter values, white matter tracts, white matter voxels, and connections in structural brain networks. Our results revealed that multi-shell diffusion imaging data can be leveraged to robustly characterize neurodevelopment, and demonstrate stronger age effects than equivalent single-shell data. Additionally, MAPL-derived metrics were less sensitive to the confounding effects of head motion. Our findings suggest that multi-shell imaging data and contemporary modeling techniques confer important advantages for studies of neurodevelopment.


Assuntos
Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão/métodos , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Adulto Jovem
11.
Neuropsychopharmacology ; 44(13): 2254-2262, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31476764

RESUMO

Irritability is an important dimension of psychopathology that spans multiple clinical diagnostic categories, yet its relationship to patterns of brain development remains sparsely explored. Here, we examined how transdiagnostic symptoms of irritability relate to the development of structural brain networks. All participants (n = 137, 83 females) completed structural brain imaging with 3 Tesla MRI at two timepoints (mean age at follow-up: 21.1 years, mean inter-scan interval: 5.2 years). Irritability at follow-up was assessed using the Affective Reactivity Index, and cortical thickness was quantified using Advanced Normalization Tools software. Structural covariance networks were delineated using non-negative matrix factorization, a multivariate analysis technique. Both cross-sectional and longitudinal associations with irritability at follow-up were evaluated using generalized additive models with penalized splines. The False Discovery Rate (q < 0.05) was used to correct for multiple comparisons. Cross-sectional analysis of follow-up data revealed that 11 of the 24 covariance networks were associated with irritability, with higher levels of irritability being associated with thinner cortex. Longitudinal analyses further revealed that accelerated cortical thinning within nine networks was related to irritability at follow-up. Effects were particularly prominent in brain regions implicated in emotion regulation, including the orbitofrontal, lateral temporal, and medial temporal cortex. Collectively, these findings suggest that irritability is associated with widespread reductions in cortical thickness and accelerated cortical thinning, particularly within the frontal and temporal cortex. Aberrant structural maturation of regions important for emotional regulation may in part underlie symptoms of irritability.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Humor Irritável/fisiologia , Adolescente , Adulto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Criança , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/crescimento & desenvolvimento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa