Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2026, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467600

RESUMO

Timely detection of Barrett's esophagus, the pre-malignant condition of esophageal adenocarcinoma, can improve patient survival rates. The Cytosponge-TFF3 test, a non-endoscopic minimally invasive procedure, has been used for diagnosing intestinal metaplasia in Barrett's. However, it depends on pathologist's assessment of two slides stained with H&E and the immunohistochemical biomarker TFF3. This resource-intensive clinical workflow limits large-scale screening in the at-risk population. To improve screening capacity, we propose a deep learning approach for detecting Barrett's from routinely stained H&E slides. The approach solely relies on diagnostic labels, eliminating the need for expensive localized expert annotations. We train and independently validate our approach on two clinical trial datasets, totaling 1866 patients. We achieve 91.4% and 87.3% AUROCs on discovery and external test datasets for the H&E model, comparable to the TFF3 model. Our proposed semi-automated clinical workflow can reduce pathologists' workload to 48% without sacrificing diagnostic performance, enabling pathologists to prioritize high risk cases.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Aprendizado Profundo , Neoplasias Esofágicas , Humanos , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/patologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Metaplasia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa