Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Big Data ; 12(2): 155-172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37289808

RESUMO

Diabetic foot ulcer (DFU) is a problem worldwide, and prevention is crucial. The image segmentation analysis of DFU identification plays a significant role. This will produce different segmentation of the same idea, incomplete, imprecise, and other problems. To address these issues, a method of image segmentation analysis of DFU through internet of things with the technique of virtual sensing for semantically similar objects, the analysis of four levels of range segmentation (region-based, edge-based, image-based, and computer-aided design-based range segmentation) for deeper segmentation of images is implemented. In this study, the multimodal is compressed with the object co-segmentation for semantical segmentation. The result is predicting the better validity and reliability assessment. The experimental results demonstrate that the proposed model can efficiently perform segmentation analysis, with a lower error rate, than the existing methodologies. The findings on the multiple-image dataset show that DFU obtains an average segmentation score of 90.85% and 89.03% correspondingly in two types of labeled ratios before DFU with virtual sensing and after DFU without virtual sensing (i.e., 25% and 30%), which is an increase of 10.91% and 12.22% over the previous best results. In live DFU studies, our proposed system improved by 59.1% compared with existing deep segmentation-based techniques and its average image smart segmentation improvements over its contemporaries are 15.06%, 23.94%, and 45.41%, respectively. Proposed range-based segmentation achieves interobserver reliability by 73.9% on the positive test namely likelihood ratio test set with only a 0.25 million parameters at the pace of labeled data.


Assuntos
Diabetes Mellitus , Pé Diabético , Internet das Coisas , Humanos , Pé Diabético/diagnóstico por imagem , Reprodutibilidade dos Testes , Internet
2.
Bioinorg Chem Appl ; 2022: 2682287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586785

RESUMO

Schistosoma mansoni is one of the tropical diseases with the greatest epidemic reach in the world. One of the WHO guidelines is the prior and efficient diagnosis for mapping foci and applying the appropriate treatment of infected people. The current process for diagnosis still depends on an analysis of parasitological exams performed by a human being under a laboratory microscope. The area of pattern recognition in images presents itself as a promising alternative to support and automate image-based exams, and deep learning techniques have been successfully applied for this purpose. In order to automate this process, it is proposed in this work the application of deep learning methods for the detection of schistosomiasis eggs, and a comparison is made between two deep learning techniques, convolutional neural network (CNN) and structured pyramidal neural network (SPNN). The results obtained in a real database indicate that the techniques are effective in the recognition of schistosomiasis eggs, in which both obtained AUC (area under the curve) above 0.90, with the CNN showing superiority in this aspect. . However, the SPNN proved to be faster than the CNN.

3.
Contrast Media Mol Imaging ; 2022: 3346055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072620

RESUMO

The electrocardiogram (ECG) is a generally used instrument for examining cardiac disorders. For proper interpretation of cardiac illnesses, a noise-free ECG is often preferred. ECG signals, on the other hand, are suffering from numerous noises throughout gathering and programme. This article suggests an empirical mode decomposition-based adaptive ECG noise removal technique (EMD). The benefits of the proposed methods are used to dip noise in ECG signals with the least amount of distortion. For decreasing high-frequency noises, traditional EMD-based approaches either cast off the preliminary fundamental functions or use a window-based methodology. The signal quality is then improved via an adaptive process. The simulation study uses ECG data from the universal MIT-BIH database as well as the Brno University of Technology ECG Quality Database (BUT QDB). The proposed method's efficiency is measured using three typical evaluation metrics: mean square error, output SNR change, and ratio root mean square alteration at various SNR levels (signal to noise ratio). The suggested noise removal approach is compatible with other commonly used ECG noise removal techniques. A detailed examination reveals that the proposed method could be served as an effective means of noise removal ECG signals, resulting in enhanced diagnostic functions in automated medical systems.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Bases de Dados Factuais , Eletrocardiografia/métodos , Razão Sinal-Ruído
4.
PeerJ Comput Sci ; 8: e1050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092005

RESUMO

Context: The computerization of both fetal heart rate (FHR) and intelligent classification modeling of the cardiotocograph (CTG) is one of the approaches that are utilized in assisting obstetricians in conducting initial interpretation based on (CTG) analysis. CTG tracing interpretation is crucial for the monitoring of the fetal status during weeks into the pregnancy and childbirth. Most contemporary studies rely on computer-assisted fetal heart rate (FHR) feature extraction and CTG categorization to determine the best precise diagnosis for tracking fetal health during pregnancy. Furthermore, through the utilization of a computer-assisted fetal monitoring system, the FHR patterns can be precisely detected and categorized. Objective: The goal of this project is to create a reliable feature extraction algorithm for the FHR as well as a systematic and viable classifier for the CTG through the utilization of the MATLAB platform, all the while adhering to the recognized Royal College of Obstetricians and Gynecologists (RCOG) recommendations. Method: The compiled CTG data from spiky artifacts were cleaned by a specifically created application and compensated for missing data using the guidelines provided by RCOG and the MATLAB toolbox after the implemented data has been processed and the FHR fundamental features have been extracted, for example, the baseline, acceleration, deceleration, and baseline variability. This is followed by the classification phase based on the MATLAB environment. Next, using the guideline provided by the RCOG, the signals patterns of CTG were classified into three categories specifically as normal, abnormal (suspicious), or pathological. Furthermore, to ensure the effectiveness of the created computerized procedure and confirm the robustness of the method, the visual interpretation performed by five obstetricians is compared with the results utilizing the computerized version for the 150 CTG signals. Results: The attained CTG signal categorization results revealed that there is variability, particularly a trivial dissimilarity of approximately (+/-4 and 6) beats per minute (b.p.m.). It was demonstrated that obstetricians' observations coincide with algorithms based on deceleration type and number, except for acceleration values that differ by up to (+/-4). Discussion: The results obtained based on CTG interpretation showed that the utilization of the computerized approach employed in infirmaries and home care services for pregnant women is indeed suitable. Conclusions: The classification based on CTG that was used for the interpretation of the FHR attribute as discussed in this study is based on the RCOG guidelines. The system is evaluated and validated by experts based on their expert opinions and was compared with the CTG feature extraction and classification algorithms developed using MATLAB.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa