Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Psychiatry ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391530

RESUMO

Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.

2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928227

RESUMO

Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.


Assuntos
Ácido Glutâmico , Transtornos Mentais , Humanos , Ácido Glutâmico/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Animais , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Plasticidade Neuronal , Encéfalo/metabolismo , Encéfalo/patologia , Adulto , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtorno do Espectro Autista/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685895

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The causes of the disease are not well understood, as it involves a complex interaction between genetic, environmental, and epigenetic factors. SAMP8 mice have been proposed as a model for studying late-onset AD, since they show age-related learning and memory deficits as well as several features of AD pathogenesis. Epigenetic changes have been described in SAMP8 mice, although sex differences have never been evaluated. Here we used western blot and qPCR analyses to investigate whether epigenetic markers are differentially altered in the dorsal hippocampus, a region important for the regulation of learning and memory, of 9-month-old male and female SAMP8 mice. We found that H3Ac was selectively reduced in male SAMP8 mice compared to male SAMR1 control mice, but not in female mice, whereas H3K27me3 was reduced overall in SAMP8 mice. Moreover, the levels of HDAC2 and JmjD3 were increased, whereas the levels of HDAC4 and Dnmt3a were reduced in SAMP8 mice compared to SAMR1. In addition, levels of HDAC1 were reduced, whereas Utx and Jmjd3 were selectively increased in females compared to males. Although our results are preliminary, they suggest that epigenetic mechanisms in the dorsal hippocampus are differentially regulated in male and female SAMP8 mice.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Feminino , Masculino , Animais , Camundongos , Hipocampo , Doença de Alzheimer/genética , Amnésia , Epigênese Genética , Transtornos da Memória
4.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675068

RESUMO

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.


Assuntos
MicroRNAs , Córtex Pré-Frontal , Estresse Fisiológico , Estresse Psicológico , Animais , Masculino , Ratos , Regulação para Baixo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiologia , Doença Aguda/psicologia , Doença Crônica/psicologia , Estresse Fisiológico/genética , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia
5.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445990

RESUMO

Stress is a primary risk factor in the onset of neuropsychiatric disorders, including major depressive disorder (MDD). We have previously used the chronic mild stress (CMS) model of depression in male rats to show that CMS induces morphological, functional, and molecular changes in the hippocampus of vulnerable animals, the majority of which were recovered using acute subanesthetic ketamine in just 24 h. Here, we focused our attention on the medial prefrontal cortex (mPFC), a brain area regulating emotional and cognitive functions, and asked whether vulnerability/resilience to CMS and ketamine antidepressant effects were associated with molecular and functional changes in the mPFC of rats. We found that most alterations induced by CMS in the mPFC were selectively observed in stress-vulnerable animals and were rescued by acute subanesthetic ketamine, while others were found only in resilient animals or were induced by ketamine treatment. Importantly, only a few of these modifications were also previously demonstrated in the hippocampus, while most are specific to mPFC. Overall, our results suggest that acute antidepressant ketamine rescues brain-area-specific glutamatergic changes induced by chronic stress.


Assuntos
Transtorno Depressivo Maior , Ketamina , Ratos , Masculino , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Transtorno Depressivo Maior/tratamento farmacológico , Estresse Psicológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Córtex Pré-Frontal
6.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240064

RESUMO

Traumatic stress is the main environmental risk factor for the development of psychiatric disorders. We have previously shown that acute footshock (FS) stress in male rats induces rapid and long-lasting functional and structural changes in the prefrontal cortex (PFC), which are partly reversed by acute subanesthetic ketamine. Here, we asked if acute FS may also induce any changes in glutamatergic synaptic plasticity in the PFC 24 h after stress exposure and whether ketamine administration 6 h after stress may have any effect. We found that the induction of long-term potentiation (LTP) in PFC slices of both control and FS animals is dependent on dopamine and that dopamine-dependent LTP is reduced by ketamine. We also found selective changes in ionotropic glutamate receptor subunit expression, phosphorylation, and localization at synaptic membranes induced by both acute stress and ketamine. Although more studies are needed to understand the effects of acute stress and ketamine on PFC glutamatergic plasticity, this first report suggests a restoring effect of acute ketamine, supporting the potential benefit of ketamine in limiting the impact of acute traumatic stress.


Assuntos
Ketamina , Ratos , Masculino , Animais , Ketamina/farmacologia , Dopamina/farmacologia , Plasticidade Neuronal , Potenciação de Longa Duração , Córtex Pré-Frontal
7.
J Cell Physiol ; 237(10): 3834-3844, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908196

RESUMO

Stressful life events are considered major risk factors for the development of several psychiatric disorders, though people differentially cope with stress. The reasons for this are still largely unknown but could be accounted for by individual genetic variants, previous life events, or the kind of stressors. The human brain-derived neurotrophic factor (BDNF) Val66Met variant, which was found to impair intracellular trafficking and activity-dependent secretion of BDNF, has been associated with increased susceptibility to develop several neuropsychiatric disorders, although there is still some controversial evidence. On the other hand, acute stress has been consistently demonstrated to promote the release of glutamate in cortico-limbic regions and altered glutamatergic transmission has been reported in psychiatric disorders. However, it is not known if the BDNF Val66Met single-nucleotide polymorphism (SNP) affects the stress-induced presynaptic glutamate release. In this study, we exposed adult male BDNFVal/Val and BDNFVal/Met knock-in mice to 30 min of acute restraint stress. Plasma corticosterone levels, glutamate release, protein, and gene expression in the hippocampus were analyzed immediately after the end of the stress session. Acute restraint stress similarly increased plasma corticosterone levels and nuclear glucocorticoid receptor levels and phosphorylation in both BDNFVal/Val and BDNFVal/Met mice. However, acute restraint stress induced higher increases in hippocampal presynaptic release of glutamate, phosphorylation of cAMP-response element binding protein (CREB), and levels of the immediate early gene c-fos of BDNFVal/Met compared to BFNFVal/Val mice. Moreover, acute restraint stress selectively increased phosphorylation levels of synapsin I at Ser9 and at Ser603 in BDNFVal/Val and BDNFVal/Met mice, respectively. In conclusion, we report here that the BDNF Val66Met SNP knock-in mice display an altered response to acute restraint stress in terms of hippocampal glutamate release, CREB phosphorylation, and neuronal activation, compared to wild-type animals. Taken together, these results could partially explain the enhanced vulnerability to stressful events of Met carriers reported in both preclinical and clinical studies.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ácido Glutâmico , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona , Genótipo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores de Glucocorticoides/genética , Estresse Fisiológico , Sinapsinas/genética , Sinapsinas/metabolismo
8.
Cereb Cortex ; 29(12): 4948-4957, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30877789

RESUMO

Brain energy metabolism actively regulates synaptic transmission and activity. We have previously shown that acute footshock (FS)-stress induces fast and long-lasting functional and morphological changes at excitatory synapses in prefrontal cortex (PFC). Here, we asked whether FS-stress increased energy metabolism in PFC, and modified related cognitive functions. Using positron emission tomography (PET), we found that FS-stress induced a redistribution of glucose metabolism in the brain, with relative decrease of [18F]FDG uptake in ventro-caudal regions and increase in dorso-rostral ones. Absolute [18F]FDG uptake was inversely correlated with serum corticosterone. Increased specific hexokinase activity was also measured in purified PFC synaptosomes (but not in total extract) of FS-stressed rats, which positively correlated with 2-Deoxy [3H] glucose uptake by synaptosomes. In line with increased synaptic energy demand, using an electron microscopy-based stereological approach, we found that acute stress induced a redistribution of mitochondria at excitatory synapses, together with an increase in their volume. The fast functional and metabolic activation of PFC induced by acute stress, was accompanied by rapid and sustained alterations of working memory performance in delayed response to T-maze test. Taken together, the present data suggest that acute stress increases energy consumption at PFC synaptic terminals and alters working memory.


Assuntos
Metabolismo Energético/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/metabolismo , Sinapses/metabolismo , Animais , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley
9.
Int J Neuropsychopharmacol ; 22(2): 119-135, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445512

RESUMO

The underlying neurobiological basis of major depressive disorder remains elusive due to the severity, complexity, and heterogeneity of the disorder. While the traditional monoaminergic hypothesis has largely fallen short in its ability to provide a complete picture of major depressive disorder, emerging preclinical and clinical findings suggest that dysfunctional glutamatergic neurotransmission may underlie the pathophysiology of both major depressive disorder and bipolar depression. In particular, recent studies showing that a single intravenous infusion of the glutamatergic modulator ketamine elicits fast-acting, robust, and relatively sustained antidepressant, antisuicidal, and antianhedonic effects in individuals with treatment-resistant depression have prompted tremendous interest in understanding the mechanisms responsible for ketamine's clinical efficacy. These results, coupled with new evidence of the mechanistic processes underlying ketamine's effects, have led to inventive ways of investigating, repurposing, and expanding research into novel glutamate-based therapeutic targets with superior antidepressant effects but devoid of dissociative side effects. Ketamine's targets include noncompetitive N-methyl-D-aspartate receptor inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid throughput potentiation coupled with downstream signaling changes, and N-methyl-D-aspartate receptor targets localized on gamma-aminobutyric acid-ergic interneurons. Here, we review ketamine and other potentially novel glutamate-based treatments for treatment-resistant depression, including N-methyl-D-aspartate receptor antagonists, glycine binding site ligands, metabotropic glutamate receptor modulators, and other glutamatergic modulators. Both the putative mechanisms of action of these agents and clinically relevant studies are described.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antidepressivos/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Humanos , Ketamina/administração & dosagem
10.
Neurobiol Dis ; 95: 122-33, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27425885

RESUMO

Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and ß-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ácido Glutâmico/metabolismo , Receptores Pré-Sinápticos/metabolismo , Sinaptossomos/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Exocitose/fisiologia , Camundongos Transgênicos , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo
11.
Neural Plast ; 2016: 6752193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057367

RESUMO

Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiopatologia , Plasticidade Neuronal/fisiologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia
12.
Neural Plast ; 2016: 7267865, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966584

RESUMO

Clinical studies on patients with stress-related neuropsychiatric disorders reported functional and morphological changes in brain areas where glutamatergic transmission is predominant, including frontal and prefrontal areas. In line with this evidence, several preclinical works suggest that glutamate receptors are targets of both rapid and long-lasting effects of stress. Here we found that acute footshock- (FS-) stress, although inducing no transcriptional and RNA editing alterations of ionotropic AMPA and NMDA glutamate receptor subunits, rapidly and transiently modulates their protein expression, phosphorylation, and localization at postsynaptic spines in prefrontal and frontal cortex. In total extract, FS-stress increased the phosphorylation levels of GluA1 AMPA subunit at Ser(845) immediately after stress and of GluA2 Ser(880) 2 h after start of stress. At postsynaptic spines, stress induced a rapid decrease of GluA2 expression, together with an increase of its phosphorylation at Ser(880), suggesting internalization of GluA2 AMPA containing receptors. GluN1 and GluN2A NMDA receptor subunits were found markedly upregulated in postsynaptic spines, 2 h after start of stress. These results suggest selected time-dependent changes in glutamatergic receptor subunits induced by acute stress, which may suggest early and transient enhancement of AMPA-mediated currents, followed by a transient activation of NMDA receptors.


Assuntos
Encéfalo/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo , Animais , Corticosterona/sangue , Eletrochoque , Masculino , Fosforilação , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Fatores de Tempo
13.
Hippocampus ; 25(11): 1380-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25820928

RESUMO

Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética/fisiologia , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Atividade Motora/fisiologia , Restrição Física/fisiologia , Estresse Psicológico/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estresse Psicológico/prevenção & controle
14.
Int J Neuropsychopharmacol ; 18(12)2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26108221

RESUMO

BACKGROUND: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. METHODS: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF(Met) allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. RESULTS: BDNF-4 and BDNF-6 transcripts were reduced in BDNF(Met/Met) mice, compared with BDNF(Val/Val) mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNF(Met/Met). The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNF(Met/Met) mice, while no changes were found for BDNF-2 and BDNF-4. CONCLUSIONS: Impaired BDNF expression and dendritic targeting in BDNF(Met/Met) mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Polimorfismo Genético , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Imunoprecipitação da Cromatina , Dendritos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Hibridização In Situ , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Complexo Repressor Polycomb 2/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Isoformas de Proteínas , Transporte Proteico/efeitos dos fármacos
15.
BMC Neurosci ; 15: 119, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25332063

RESUMO

BACKGROUND: The novel antidepressant agomelatine, a melatonergic MT1/MT2 agonist combined with 5-HT2c serotonin antagonist properties, showed antidepressant action in preclinical and clinical studies. There is a general agreement that the therapeutic action of antidepressants needs the activation of slow-onset adaptations in downstream signalling pathways finally regulating neuroplasticity. In the last several years, particular attention was given to cAMP-responsive element binding protein (CREB)-related pathways, since it was shown that chronic antidepressants increase CREB phosphorylation and transcriptional activity, through the activation of calcium/calmodulin-dependent (CaM) and mitogen activated protein kinase cascades (MAPK/Erk1/2). Aim of this work was to analyse possible effects of chronic agomelatine on time-dependent changes of different intracellular signalling pathways in hippocampus and prefrontal/frontal cortex of male rats. To this end, measurements were performed 1 h or 16 h after the last agomelatine or vehicle injection. RESULTS: We have found that in naïve rats chronic agomelatine, contrary to traditional antidepressants, did not increase CREB phosphorylation, but modulates the time-dependent regulation of MAPK/Erk1/2 and Akt/glycogen synthase kinase-3 (GSK-3) pathways. CONCLUSION: Our results suggest that the intracellular molecular mechanisms modulated by chronic agomelatine may be partly different from those of traditional antidepressants and involve the time-dependent regulation of MAPK/Erk1/2 and Akt/GSK-3 signalling pathways. This could exert a role in the antidepressant efficacy of the drug.


Assuntos
Acetamidas/farmacologia , Antidepressivos/farmacologia , Lobo Frontal/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Western Blotting , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lobo Frontal/enzimologia , Hipocampo/enzimologia , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Fatores de Tempo
16.
Transl Psychiatry ; 14(1): 209, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796504

RESUMO

Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.


Assuntos
Astrócitos , Modelos Animais de Doenças , Ketamina , Microglia , Transtornos de Estresse Pós-Traumáticos , Animais , Ketamina/farmacologia , Ketamina/administração & dosagem , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Ratos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Estresse Psicológico/metabolismo , Ratos Sprague-Dawley , NF-kappa B/metabolismo
17.
BMC Neurosci ; 14: 75, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23895555

RESUMO

BACKGROUND: Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. RESULTS: Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. CONCLUSIONS: Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release.


Assuntos
Acetamidas/farmacologia , Antidepressivos/farmacologia , Cicloexanóis/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Sinaptossomos/efeitos dos fármacos , Análise de Variância , Animais , Ionóforos de Cálcio/farmacologia , Ionomicina/farmacologia , Masculino , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Cloridrato de Venlafaxina , Ácido gama-Aminobutírico/metabolismo
18.
J Gerontol A Biol Sci Med Sci ; 78(11): 1935-1943, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37422721

RESUMO

Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research. The senescence-accelerated prone-8 (SAMP8) mouse strain exhibits early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as a model of aging and neurodegenerative diseases. Here, we examined the frailty phenotype, which includes body weight, strength, endurance, activity, and slow walking speed, in male and female SAMP8 and senescence-accelerated mouse resistant (SAMR1) mice at 6- and 9-months of age. We found that the prevalence of frailty was higher in SAMP8 mice compared with SAMR1 mice, regardless of sex. The overall percentage of prefrail and frail mice was similar in male and female SAMP8 mice, although the percentage of frail mice was slightly higher in males than in females. In addition, we found sex- and frailty-specific changes in selected miRNAs blood levels. In particular, the levels of miR-34a-5p and miR-331-3p were higher in both prefrail and frail mice, whereas miR-26b-5p was increased only in frail mice compared with robust mice. Finally, levels of miR-331-3p were also increased in whole blood from a small group of frail patients. Overall, these results suggest that SAMP8 mice may be a useful mouse model for identifying potential biomarkers and studying biological mechanisms of frailty.


Assuntos
Fragilidade , MicroRNAs , Humanos , Camundongos , Masculino , Feminino , Animais , Idoso , MicroRNAs/genética , Fragilidade/genética , Caracteres Sexuais , Envelhecimento/fisiologia , Fenótipo , Biomarcadores , Modelos Animais de Doenças
19.
Genes (Basel) ; 14(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36981011

RESUMO

Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after. While no substantial changes were observed at the single gene level immediately after the stress session, gene set enrichment analysis showed alterations in neuronal pathways associated with glia development, glia-neuron networking, and synaptic function. Furthermore, we found alterations in the expression of gene sets regulated by specific transcription factors that could represent master regulators of the acute stress response. Of note, these pathways and transcriptional programs are activated during the early stress response (immediately after FS) and are already turned off after 2 h-while at 24 h, the transcriptional profile is largely unaffected. Overall, our analysis provided a transcriptional landscape of the early changes triggered by acute unavoidable FS stress in the PFC of rats, suggesting that the transcriptional wave is fast and mild, but probably enough to activate a cellular response to acute stress.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Ratos Sprague-Dawley , Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/metabolismo , Adaptação Psicológica
20.
Transl Psychiatry ; 13(1): 62, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36806044

RESUMO

Stress represents a main risk factor for psychiatric disorders. Whereas it is known that even a single trauma may induce psychiatric disorders in humans, the mechanisms of vulnerability to acute stressors have been little investigated. In this study, we generated a new animal model of resilience/vulnerability to acute footshock (FS) stress in rats and analyzed early functional, molecular, and morphological determinants of stress vulnerability at tripartite glutamate synapses in the prefrontal cortex (PFC). We found that adult male rats subjected to FS can be deemed resilient (FS-R) or vulnerable (FS-V), based on their anhedonic phenotype 24 h after stress exposure, and that these two populations are phenotypically distinguishable up to two weeks afterwards. Basal presynaptic glutamate release was increased in the PFC of FS-V rats, while depolarization-evoked glutamate release and synapsin I phosphorylation at Ser9 were increased in both FS-R and FS-V. In FS-R and FS-V rats the synaptic expression of GluN2A and apical dendritic length of prelimbic PFC layers II-III pyramidal neurons were decreased, while BDNF expression was selectively reduced in FS-V. Depolarization-evoked (carrier-mediated) glutamate release from astroglia perisynaptic processes (gliosomes) was selectively increased in the PFC of FS-V rats, while GLT1 and xCt levels were higher and GS expression reduced in purified PFC gliosomes from FS-R. Overall, we show for the first time that the application of the sucrose intake test to rats exposed to acute FS led to the generation of a novel animal model of resilience/vulnerability to acute stress, which we used to identify early determinants of maladaptive response related to behavioral vulnerability to stress.


Assuntos
Astrócitos , Ácido Glutâmico , Humanos , Adulto , Masculino , Animais , Ratos , Modelos Animais , Córtex Pré-Frontal , Sinapses
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa