RESUMO
SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.
Assuntos
Convalescença , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Adulto , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/patologia , Feminino , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/patologia , SARS-CoV-2RESUMO
Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , RNA Mensageiro/genética , Síndrome , Vacinação , Proteínas do Envelope ViralRESUMO
Pneumococcal conjugate vaccines (PCVs) used in childhood vaccination programs have resulted in replacement of vaccine-type with nonvaccine-type pneumococci in carriage and invasive pneumococcal disease (IPD). A vaccine based on highly conserved and protective pneumococcal antigens is urgently needed. Here, we performed intranasal immunization of mice with pneumococcal membrane particles (MPs) to mimic natural nasopharyngeal immunization. MP immunization gave excellent serotype-independent protection against IPD that was antibody dependent but independent of the cytotoxin pneumolysin. Using Western blotting, immunoprecipitation, mass spectrometry, and different bacterial mutants, we identified the conserved lipoproteins MalX and PrsA as the main antigens responsible for cross-protection. Additionally, we found that omitting the variable surface protein and vaccine candidate PspA from MPs enhanced protective immune responses to the conserved proteins. Our findings suggest that MPs containing MalX and PrsA could serve as a platform for pneumococcal vaccine development targeting the elderly and immunocompromised.
Assuntos
Proteínas de Bactérias , Lipoproteínas , Proteínas de Membrana , Proteínas de Membrana Transportadoras , Infecções Pneumocócicas , Vacinas Pneumocócicas , Administração Intranasal , Animais , Proteínas de Bactérias/imunologia , Membrana Celular/imunologia , Sequência Conservada , Reações Cruzadas , Humanos , Imunização/métodos , Lipoproteínas/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Sorogrupo , Streptococcus pneumoniae/imunologiaRESUMO
Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Lipídeos/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase , Peptidoglicano/biossíntese , Fosfatos de Poli-Isoprenil , Streptococcus pneumoniae/efeitos dos fármacos , Ácidos Teicoicos/química , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivadosRESUMO
Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .
Assuntos
Vacina BNT162/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Hospedeiro Imunocomprometido/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Vacinação/métodos , Vacinação/estatística & dados numéricos , Adulto JovemAssuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , COVID-19/prevenção & controle , RNA Mensageiro , Leucemia Linfocítica Crônica de Células B/complicações , Leucemia Linfocítica Crônica de Células B/genética , SARS-CoV-2 , Hospedeiro Imunocomprometido , Vacinação , Anticorpos AntiviraisRESUMO
Type IV pili are important virulence factors on the surface of many pathogenic bacteria and have been implicated in a wide range of diverse functions, including attachment, twitching motility, biofilm formation, and horizontal gene transfer. The respiratory pathogen Streptococcus pneumoniae deploys type IV pili to take up DNA during transformation. These "competence pili" are composed of the major pilin protein ComGC and exclusively assembled during bacterial competence, but their biogenesis remains unclear. Here, we report the high resolution NMR structure of N-terminal truncated ComGC revealing a highly flexible and structurally divergent type IV pilin. It consists of only three α-helical segments forming a well-defined electronegative cavity and confined electronegative and hydrophobic patches. The structure is particularly flexible between the first and second α-helix with the first helical part exhibiting slightly slower dynamics than the rest of the pilin, suggesting that the first helix is involved in forming the pilus structure core and that parts of helices two and three are primarily surface-exposed. Taken together, our results provide the first structure of a type IV pilin protein involved in the formation of competence-induced pili in Gram-positive bacteria and corroborate the remarkable structural diversity among type IV pilin proteins.
Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas/ultraestrutura , Modelos Moleculares , Streptococcus pneumoniae/fisiologia , Fatores de Virulência/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Dimerização , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Deleção de Genes , Interações Hidrofóbicas e Hidrofílicas , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Óperon , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes de Fusão , Solubilidade , Streptococcus pneumoniae/ultraestrutura , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae - one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.
Assuntos
Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana , Fímbrias Bacterianas/genética , Streptococcus pneumoniae/genéticaRESUMO
Streptococcus pneumoniae is a major human pathogen that successfully adapts to the host environment via an efficient uptake system for free DNA liberated from other organisms in the upper respiratory tract, facilitating immune evasion and drug resistance. Although the initial signaling events leading to pneumococcal competence for DNA transformation and the fate of DNA when it has been taken up have been extensively studied, the actual mechanism by which DNA in the environment may traverse the thick capsular and cell wall layers remains unknown. Here we visualize that induction of competence results in the formation of a native morphologically distinct pilus structure on the bacterial surface. This plaited pilus is encoded by the competence (com)G locus, and, after assembly, it is rapidly released into the surrounding medium. Heterologous pneumococcal pilus expression in Escherichia coli was obtained by replacing the pulE-K putative pilin genes of the Klebsiella oxytoca type II secretion system with the complete comG locus. In the pneumococcus, the coordinated secretion of pili from the cells correlates to DNA transformation. A model for DNA transformation is proposed whereby pilus assembly "drills" a channel across the thick cell wall that becomes transiently open by secretion of the pilus, providing the entry port for exogenous DNA to gain access to DNA receptors associated with the cytoplasmic membrane.
Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Competência de Transformação por DNA/genética , DNA/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana/fisiologia , Eletroforese em Gel de Poliacrilamida , Fímbrias Bacterianas/ultraestrutura , Microscopia Eletrônica de Transmissão , Transformação Bacteriana/genética , Ácido TricloroacéticoRESUMO
BACKGROUND: Immunocompromised patients with primary and secondary immunodeficiencies have shown impaired responses to SARS-CoV-2 mRNA vaccines, necessitating recommendations for additional booster doses. However, longitudinal data reflecting the real-world impact of such recommendations remains limited. METHODS: This study represents a two-year follow-up of the COVAXID clinical trial, where 364 of the original 539 subjects consented to participate. 355 individuals provided blood samples for evaluation of binding antibody (Ab) titers and pseudo-neutralisation capacity against both the ancestral SARS-CoV-2 strain and prevalent Omicron variants. T cell responses were assessed in a subset of these individuals. A multivariate analysis determined the correlation between Ab responses and the number of vaccine doses received, documented infection events, immunoglobulin replacement therapy (IGRT), and specific immunosuppressive drugs. The original COVAXID clinical trial was registered in EudraCT (2021-000175-37) and clinicaltrials.gov (NCT04780659). FINDINGS: Several of the patient groups that responded poorly to the initial primary vaccine schedule and early booster doses presented with stronger immunogenicity-related responses including binding Ab titres and pseudo-neutralisation at the 18- and 24-month sampling time point. Responses correlated positively with the number of vaccine doses and infection. The vaccine response was blunted by an immunosuppressive state due to the underlying specific disease and/or to specific immunosuppressive treatment. INTERPRETATION: The study results highlight the importance of continuous SARS-CoV-2 vaccine booster doses in building up and sustaining Ab responses in specific immunocompromised patient populations. FUNDING: The present studies were supported by the European Research Council, Karolinska Institutet, Knut and Alice Wallenberg Foundation, Nordstjernan AB, Region Stockholm, and the Swedish Research Council.
RESUMO
Background: Patients with chronic lymphocytic leukemia (CLL) are vulnerable to coronavirus disease 2019 (COVID-19) and are at risk of inferior response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, especially if treated with the first-generation Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib. We aimed to evaluate the impact of the third-generation BTKi, zanubrutinib, on systemic and mucosal response to SARS-CoV-2 vaccination. Methods: Nine patients with CLL with ongoing zanubrutinib therapy were included and donated blood and saliva during SARS-CoV-2 vaccination, before vaccine doses 3 and 5 and 2 - 3 weeks after doses 3, 4, and 5. Ibrutinib-treated control patients (n = 7) and healthy aged-matched controls (n = 7) gave blood 2 - 3 weeks after vaccine dose 5. We quantified reactivity and neutralization capacity of SARS-CoV-2-specific IgG and IgA antibodies (Abs) in both serum and saliva, and reactivity of T cells activated with viral peptides. Results: Both zanubrutinib- and ibrutinib-treated patients had significantly, up to 1,000-fold, lower total spike-specific Ab levels after dose 5 compared to healthy controls (P < 0.01). Spike-IgG levels in serum from zanubrutinib-treated patients correlated well to neutralization capacity (r = 0.68; P < 0.0001) and were thus functional. Mucosal immunity (specific IgA in serum and saliva) was practically absent in zanubrutinib-treated patients even after five vaccine doses, whereas healthy controls had significantly higher levels (tested in serum after vaccine dose 5) (P < 0.05). In contrast, T-cell reactivity against SARS-CoV-2 peptides was equally high in zanubrutinib- and ibrutinib-treated patients as in healthy control donors. Conclusions: In our small cohort of zanubrutinib-treated CLL patients, we conclude that up to five doses of SARS-CoV-2 vaccination induced no detectable IgA mucosal immunity, which likely will impair the primary barrier defence against the infection. Systemic IgG responses were also impaired, whereas T-cell responses were normal. Further and larger studies are needed to evaluate the impact of these findings on disease protection.
RESUMO
BACKGROUND: Immunocompromised patients have varying responses to SARS-CoV-2 mRNA vaccination. However, there is limited information available from prospective clinical trial cohorts with respect to long-term immunogenicity-related responses in these patient groups following three or four vaccine doses, and in applicable cases infection. METHODS: In a real-world setting, we assessed the long-term immunogenicity-related responses in patients with primary and secondary immunodeficiencies from the prospective open-label clinical trial COVAXID. The original clinical trial protocol included two vaccine doses given on days 0 and 21, with antibody titres measured at six different timepoints over six months. The study cohort has subsequently been followed for one year with antibody responses evaluated in relation to the third and fourth vaccine dose, and in applicable cases SARS-CoV-2 infection. In total 356/539 patients were included in the extended cohort. Blood samples were analysed for binding antibody titres and neutralisation against the Spike protein for all SARS-CoV-2 variants prevailing during the study period, including Omicron subvariants. SARS-CoV-2 infections that did not require hospital care were recorded through quarterly in-person, or phone-, interviews and assessment of IgG antibody titres against SARS-CoV-2 Nucleocapsid. The original clinical trial was registered in EudraCT (2021-000175-37) and clinicaltrials.gov (NCT04780659). FINDINGS: The third vaccine dose significantly increased Spike IgG titres against all the SARS-CoV-2 variants analysed in all immunocompromised patient groups. Similarly, neutralisation also increased against all variants studied, except for Omicron. Omicron-specific neutralisation, however, increased after a fourth dose as well as after three doses and infection in many of the patient subgroups. Noteworthy, however, while many patient groups mounted strong serological responses after three and four vaccine doses, comparably weak responders were found among patient subgroups with specific primary immunodeficiencies and subgroups with immunosuppressive medication. INTERPRETATION: The study identifies particularly affected patient groups in terms of development of long-term immunity among a larger group of immunocompromised patients. In particular, the results highlight poor vaccine-elicited neutralising responses towards Omicron subvariants in specific subgroups. The results provide additional knowledge of relevance for future vaccination strategies. FUNDING: The present studies were supported by grants from the Swedish Research Council, the Knut and Alice Wallenberg Foundation, Nordstjernan AB, Region Stockholm, and Karolinska Institutet.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Seguimentos , Hospedeiro Imunocomprometido , Estudos Prospectivos , RNA Mensageiro , VacinaçãoRESUMO
Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC; n=57) and people living with HIV (PLHIV; n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.
Assuntos
Vacina BNT162 , COVID-19 , Humanos , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Infecções por HIV , Imunoglobulina A Secretora , Saliva/imunologiaRESUMO
We studied clinical and immunological outcome of Covid-19 in consecutive CLL patients from a well-defined area during month 1-13 of the pandemic. Sixty patients (median age 71 y, range 43-97) were identified. Median CIRS was eight (4-20). Patients had indolent CLL (n = 38), had completed (n = 12) or ongoing therapy (n = 10). Forty-six patients (77%) were hospitalized due to severe Covid-19 and 11 were admitted to ICU. Severe Covid-19 was equally distributed across subgroups irrespective of age, gender, BMI, CLL status except CIRS (p < 0.05). Fourteen patients (23%) died; age ≥75 y was the only significant risk factor (p < 0.05, multivariate analysis with limited power). Comparing month 1-6 vs 7-13 of the pandemic, deaths were numerically reduced from 32% to 18%, ICU admission from 37% to 15% whereas hospitalizations remained frequent (86% vs 71%). Seroconversion occurred in 33/40 patients (82%) and anti-SARS-CoV-2 antibodies were detectable at six and 12 months in 17/22 and 8/11 patients, respectively. Most (13/17) had neutralizing antibodies and 19/28 had antibodies in saliva. SARS-CoV-2-specific T-cells (ELISpot) were detected in 14/17 patients. Covid-19 continued to result in high admission even among consecutive and young early- stage CLL patients. A robust and durable B and/or T cell immunity was observed in most convalescents.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/complicações , Leucemia Linfocítica Crônica de Células B/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Terapia Combinada , Feminino , Seguimentos , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Leucemia Linfocítica Crônica de Células B/virologia , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/isolamento & purificaçãoRESUMO
Objectives: Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. Methods: Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. Results: In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50-99% likelihood, and 4.0% (n = 203) to have a 10-49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. Conclusion: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.
RESUMO
BACKGROUND: Immunocompromised individuals are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Whether vaccine-induced immunity in these individuals involves oral cavity, a primary site of infection, is presently unknown. METHODS: Immunocompromised patients (n = 404) and healthy controls (n = 82) participated in a prospective clinical trial (NCT04780659) encompassing two doses of the mRNA BNT162b2 vaccine. Primary immunodeficiency (PID), secondary immunodeficiencies caused by human immunodeficiency virus (HIV) infection, allogeneic hematopoietic stem cell transplantation (HSCT)/chimeric antigen receptor T cell therapy (CAR-T), solid organ transplantation (SOT), and chronic lymphocytic leukemia (CLL) patients were included. Salivary and serum immunoglobulin G (IgG) reactivities to SARS-CoV-2 spike were measured by multiplex bead-based assays and Elecsys anti-SARS-CoV-2 S assay. FINDINGS: IgG responses to SARS-CoV-2 spike antigens in saliva in HIV and HSCT/CAR-T groups were comparable to those of healthy controls after vaccination. The PID, SOT, and CLL patients had weaker responses, influenced mainly by disease parameters or immunosuppressants. Salivary responses correlated remarkably well with specific IgG titers and the neutralizing capacity in serum. Receiver operating characteristic curve analysis for the predictive power of salivary IgG yielded area under the curve (AUC) = 0.95 and positive predictive value (PPV) = 90.7% for the entire cohort after vaccination. CONCLUSIONS: Saliva conveys vaccine responses induced by mRNA BNT162b2. The predictive power of salivary spike IgG makes it highly suitable for screening vulnerable groups for revaccination. FUNDING: Knut and Alice Wallenberg Foundation, Erling Perssons family foundation, Region Stockholm, Swedish Research Council, Karolinska Institutet, Swedish Blood Cancer Foundation, PID patient organization of Sweden, Nordstjernan AB, Center for Medical Innovation (CIMED), Swedish Medical Research Council, and Stockholm County Council (ALF).
Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Hospedeiro Imunocomprometido , Imunoglobulina A Secretora , Imunoglobulina G , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Saliva , Soroconversão , Glicoproteína da Espícula de CoronavírusRESUMO
Chlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the host cell cytoplasm. Here we describe a family of type III secreted effectors that are present in all pathogenic chlamydiae and absent in the environment-related species. It is defined by a common domain of unknown function, DUF582, that is present in four or five proteins in each Chlamydiaceae species. We show that the amino-terminal extremity of DUF582 proteins functions as a TTS signal. DUF582 proteins from C. trachomatis CT620, CT621, and CT711 are expressed at the middle and late phases of the infectious cycle. Immunolocalization further revealed that CT620 and CT621 are secreted into the host cell cytoplasm, as well as within the lumen of the inclusion, where they do not associate with bacterial markers. Finally, we show that DUF582 proteins are present in nuclei of infected cells, suggesting that members of the DUF582 family of effector proteins may target nuclear cell functions. The expansion of this family of proteins in pathogenic chlamydiae and their conservation among the different species suggest that they play important roles in the infectious cycle.
Assuntos
Proteínas de Bactérias/metabolismo , Chlamydiaceae/metabolismo , Sequência de Aminoácidos , Chlamydiaceae/genética , Chlamydiaceae/patogenicidade , Citoplasma , Regulação Bacteriana da Expressão Gênica/fisiologia , Células HeLa , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Transporte ProteicoRESUMO
The remarkable genomic plasticity of Streptococcus pneumoniae largely depends on its ability to undergo natural genetic transformation. To take up extracellular DNA, S. pneumoniae assembles competence pili composed of the major pilin ComGC. In addition to ComGC, four minor pilins ComGD, E, F, and G are expressed during bacterial competence, but their role in pilus biogenesis and transformation is unknown. Here, using a combination of protein-protein interaction assays we show that all four proteins can directly interact with each other. Pneumococcal ComGG stabilizes the minor pilin ComGD and ComGF and can interact with and stabilize the major pilin ComGC, thus, deletion of ComGG abolishes competence pilus assembly. We further demonstrate that minor pilins are present in sheared pili fractions and find ComGF to be incorporated along the competence pilus by immunofluorescence and electron microscopy. Finally, mutants of the invariant Glu5 residue (E5), ComGDE5A or ComGEE5A, but not ComGFE5A, were severely impaired in pilus formation and function. Together, our results suggest that ComGG, lacking E5, is essential for competence pilus assembly and function, and plays a central role in connecting the pneumococcal minor pilins to ComGC.
Assuntos
Proteínas de Fímbrias , Streptococcus pneumoniae , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Streptococcus pneumoniae/genéticaRESUMO
We evaluated the performance of 11 SARS-CoV-2 antibody tests using a reference set of heat-inactivated samples from 278 unexposed persons and 258 COVID-19 patients, some of whom contributed serial samples. The reference set included samples with a variation in SARS-CoV-2 IgG antibody titers, as determined by an in-house immunofluorescence assay (IFA). The five evaluated rapid diagnostic tests had a specificity of 99.0% and a sensitivity that ranged from 56.3 to 81.6% and decreased with low IFA IgG titers. The specificity was > 99% for five out of six platform-based tests, and when assessed using samples collected ≥ 22 days after symptom onset, two assays had a sensitivity of > 96%. These two assays also detected samples with low IFA titers more frequently than the other assays. In conclusion, the evaluated antibody tests showed a heterogeneity in their performances and only a few tests performed well with samples having low IFA IgG titers, an important aspect for diagnostics and epidemiological investigations.