Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780432

RESUMO

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenômica , Filogenia , Vírus/genética
2.
J Biol Chem ; 300(5): 107218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522515

RESUMO

Virus genomes may encode overlapping or nested open reading frames that increase their coding capacity. It is not known whether the constraints on spatial structures of the two encoded proteins limit the evolvability of nested genes. We examine the evolution of a pair of proteins, p22 and p19, encoded by nested genes in plant viruses from the genus Tombusvirus. The known structure of p19, a suppressor of RNA silencing, belongs to the RAGNYA fold from the alpha+beta class. The structure of p22, the cell-to-cell movement protein from the 30K family widespread in plant viruses, is predicted with the AlphaFold approach, suggesting a single jelly-roll fold core from the all-beta class, structurally similar to capsid proteins from plant and animal viruses. The nucleotide and codon preferences impose modest constraints on the types of secondary structures encoded in the alternative reading frames, nonetheless allowing for compact, well-ordered folds from different structural classes in two similarly-sized nested proteins. Tombusvirus p22 emerged through radiation of the widespread 30K family, which evolved by duplication of a virus capsid protein early in the evolution of plant viruses, whereas lineage-specific p19 may have emerged by a stepwise increase in the length of the overprinted gene and incremental acquisition of functionally active secondary structure elements by the protein product. This evolution of p19 toward the RAGNYA fold represents one of the first documented examples of protein structure convergence in naturally occurring proteins.


Assuntos
Tombusvirus , Evolução Molecular , Fases de Leitura Aberta , Dobramento de Proteína , Estrutura Secundária de Proteína , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Homologia de Sequência de Aminoácidos , Modelos Psicológicos , Estrutura Terciária de Proteína
3.
Cell ; 142(5): 726-36, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20813260

RESUMO

In response to extracellular cues, signal transduction activates downstream transcription factors like c-Jun to induce expression of target genes. We demonstrate that the ATAC (Ada two A containing) histone acetyltransferase (HAT) complex serves as a transcriptional cofactor for c-Jun at the Jun N-terminal kinase (JNK) target genes Jra and chickadee. ATAC subunits are required for c-Jun occupancy of these genes and for H4K16 acetylation at the Jra enhancer, promoter, and transcribed sequences. Under conditions of osmotic stress, ATAC colocalizes with c-Jun, recruits the upstream kinases Misshapen, MKK4, and JNK, and suppresses further activation of JNK. Relocalization of these MAPKs and suppression of JNK activation by ATAC are dependent on the CG10238 subunit of ATAC. Thus, ATAC governs the transcriptional response to MAP kinase signaling by serving as both a coactivator of transcription and as a suppressor of upstream signaling.


Assuntos
Drosophila/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases , Sulfurtransferases/metabolismo , Animais , Linhagem Celular , Drosophila/enzimologia , Drosophila/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Pressão Osmótica , Estrutura Terciária de Proteína , Estresse Fisiológico , Sulfurtransferases/química
4.
Arch Virol ; 169(11): 236, 2024 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-39488803

RESUMO

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established.


Assuntos
Terminologia como Assunto , Vírus , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Classificação/métodos , Filogenia , Virologia/métodos
5.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141106

RESUMO

The taxonomy of viruses is developed and overseen by the International Committee on Taxonomy of Viruses (ICTV), which scrutinizes, approves and ratifies taxonomic proposals, and maintains a list of virus taxa with approved names (https://ictv.global). The ICTV has approximately 180 members who vote by simple majority. Taxon-specific Study Groups established by the ICTV have a combined membership of over 600 scientists from the wider virology community; they provide comprehensive expertise across the range of known viruses and are major contributors to the creation and evaluation of taxonomic proposals. Proposals can be submitted by anyone and will be considered by the ICTV irrespective of Study Group support. Thus, virus taxonomy is developed from within the virology community and realized by a democratic decision-making process. The ICTV upholds the distinction between a virus or replicating genetic element as a physical entity and the taxon category to which it is assigned. This is reflected by the nomenclature of the virus species taxon, which is now mandated by the ICTV to be in a binomial format (genus + species epithet) and is typographically distinct from the names of viruses. Classification of viruses below the rank of species (such as, genotypes or strains) is not within the remit of the ICTV. This article, authored by the ICTV Executive Committee, explains the principles of virus taxonomy and the organization, function, processes and resources of the ICTV, with the aim of encouraging greater understanding and interaction among the wider virology community.


Assuntos
Vírus , Vírus/classificação , Classificação
6.
Arch Virol ; 168(7): 175, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37296227

RESUMO

This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created.


Assuntos
Vírus , Humanos , Vírus/genética , Membro de Comitê
7.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373197

RESUMO

Molecular dynamics simulations of protein folding typically consider the polypeptide chain at equilibrium and in isolation from the cellular components. We argue that in order to understand protein folding as it occurs in vivo, it should be modeled as an active, energy-dependent process, in which the cellular protein-folding machine directly manipulates the polypeptide. We conducted all-atom molecular dynamics simulations of four protein domains, whose folding from the extended state was augmented by the application of rotational force to the C-terminal amino acid, while the movement of the N-terminal amino acid was restrained. We have shown earlier that such a simple manipulation of peptide backbone facilitated the formation of native structures in diverse α-helical peptides. In this study, the simulation protocol was modified, to apply the backbone rotation and movement restriction only for a short time at the start of simulation. This transient application of a mechanical force to the peptide is sufficient to accelerate, by at least an order of magnitude, the folding of four protein domains from different structural classes to their native or native-like conformations. Our in silico experiments show that a compact stable fold may be attained more readily when the motions of the polypeptide are biased by external forces and constraints.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Domínios Proteicos , Rotação , Peptídeos/química , Dobramento de Proteína , Aminoácidos
8.
J Gen Virol ; 103(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748479

RESUMO

The International Committee on Taxonomy of Viruses recently adopted, and is gradually implementing, a binomial naming format for virus species. Although full Latinization of these names remains optional, a standardized nomenclature based on Latinized binomials has the advantage of comparability with all other biological taxonomies. As a language without living native speakers, Latin is more culturally neutral than many contemporary languages, and words built from Latin roots are already widely used in the language of science across the world. Conversion of established species names to Latinized binomials or creation of Latinized binomials de novo may seem daunting, but the rules for name creation are straightforward and can be implemented in a formulaic manner. Here, we describe approaches, strategies and steps for creating Latinized binomials for virus species without prior knowledge of Latin. We also discuss a novel approach to the automated generation of large batches of novel genus and species names. Importantly, conversion to a binomial format does not affect virus names, many of which are created from local languages.


Assuntos
Terminologia como Assunto , Vírus , Vírus/classificação
9.
BMC Plant Biol ; 22(1): 56, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086479

RESUMO

BACKGROUND: Flowering signals are sensed in plant leaves and transmitted to the shoot apical meristems, where the formation of flowers is initiated. Searches for a diffusible hormone-like signaling entity ("florigen") went on for many decades, until a product of plant gene FT was identified as the key component of florigen in the 1990s, based on the analysis of mutants, genetic complementation evidence, and protein and RNA localization studies. Sequence homologs of FT protein are found throughout prokaryotes and eukaryotes; some eukaryotic family members appear to bind phospholipids or interact with the components of the signal transduction cascades. Most FT homologs are known to share a constellation of five charged residues, three of which, i.e., two histidines and an aspartic acid, are located at the rim of a well-defined cavity on the protein surface. RESULTS: We studied molecular features of the FT homologs in prokaryotes and analyzed their genome context, to find tentative evidence connecting the bacterial FT homologs with small molecule metabolism, often involving substrates that contain sugar or ribonucleoside moieties. We argue that the unifying feature of this protein family, i.e., a set of charged residues conserved at the sequence and structural levels, is more likely to be an enzymatic active center than a catalytically inert ligand-binding site. CONCLUSIONS: We propose that most of FT-related proteins are enzymes operating on small diffusible molecules. Those metabolites may constitute an overlooked essential ingredient of the florigen signal.


Assuntos
Florígeno/metabolismo , Flores/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/genética
10.
RNA ; 26(7): 803-813, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284351

RESUMO

The ribonuclease A family of proteins is well studied from the biochemical and biophysical points of view, but its evolutionary origins are obscure, as no sequences homologous to this family have been reported outside of vertebrates. Recently, the spatial structure of the ribonuclease domain from a bacterial polymorphic toxin was shown to be closely similar to the structure of vertebrate ribonuclease A. The absence of sequence similarity between the two structures prompted a speculation of convergent evolution of bacterial and vertebrate ribonuclease A-like enzymes. We show that bacterial and homologous archaeal polymorphic toxin ribonucleases with a known or predicted ribonuclease A-like fold are distant homologs of the ribonucleases from the EndoU family, found in all domains of cellular life and in viruses. We also detected a homolog of vertebrate ribonucleases A in the transcriptome assembly of the sea urchin Mesocentrotus franciscanus These observations argue for the common ancestry of prokaryotic ribonuclease A-like and ubiquitous EndoU-like ribonucleases, and suggest a better-grounded scenario for the origin of animal ribonucleases A, which could have emerged in the deuterostome lineage, either by an extensive modification of a copy of an EndoU gene, or, more likely, by a horizontal acquisition of a prokaryotic immunity-mediating ribonuclease gene.


Assuntos
Toxinas Bacterianas/genética , Ribonuclease Pancreático/genética , Sequência de Aminoácidos , Animais , Archaea/genética , Bactérias/genética , Evolução Molecular , Filogenia , Alinhamento de Sequência , Vertebrados/genética
11.
Arch Virol ; 167(4): 1231-1234, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043230

RESUMO

Following the results of the International Committee on Taxonomy of Viruses (ICTV) Ratification Vote held in March 2021, a standard two-part "binomial nomenclature" is now the norm for naming virus species. Adoption of the new nomenclature is still in its infancy; thus, it is timely to reiterate the distinction between "virus" and "virus species" and to provide guidelines for naming and writing them correctly.


Assuntos
Vírus não Classificados , Vírus , Vírus de DNA , Vírus/genética , Redação
12.
Arch Virol ; 167(11): 2429-2440, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35999326

RESUMO

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial 'Genus_name species_epithet' format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format.


Assuntos
Vírus , Membro de Comitê , Vírus/genética
13.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008947

RESUMO

The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.


Assuntos
Conformação Proteica , Dobramento de Proteína , Proteínas/química , Termodinâmica , Algoritmos , Cinética , Modelos Moleculares , Modelos Teóricos , Redobramento de Proteína , Estabilidade Proteica , Proteínas/síntese química , Proteoma , Proteômica/métodos , Proteínas Recombinantes/química , Solubilidade , Especificidade da Espécie
14.
Arch Virol ; 166(9): 2633-2648, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34231026

RESUMO

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2021. The entire ICTV was invited to vote on 290 taxonomic proposals approved by the ICTV Executive Committee at its meeting in October 2020, as well as on the proposed revision of the International Code of Virus Classification and Nomenclature (ICVCN). All proposals and the revision were ratified by an absolute majority of the ICTV members. Of note, ICTV mandated a uniform rule for virus species naming, which will follow the binomial 'genus-species' format with or without Latinized species epithets. The Study Groups are requested to convert all previously established species names to the new format. ICTV has also abolished the notion of a type species, i.e., a species chosen to serve as a name-bearing type of a virus genus. The remit of ICTV has been clarified through an official definition of 'virus' and several other types of mobile genetic elements. The ICVCN and ICTV Statutes have been amended to reflect these changes.


Assuntos
Classificação/métodos , Filogenia , Vírus não Classificados/classificação , Vírus/classificação , Cooperação Internacional , Viroides/classificação , Vírus/genética , Vírus/isolamento & purificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação
15.
Arch Virol ; 165(2): 519-525, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797129

RESUMO

The Executive Committee of the International Committee on Taxonomy of Viruses (ICTV) recognizes the need for a standardized nomenclature for virus species. This article sets out the case for establishing a binomial nomenclature and presents the advantages and disadvantages of different naming formats. The Executive Committee understands that adopting a binomial system would have major practical consequences, and invites comments from the virology community before making any decisions to change the existing nomenclature. The Executive Committee will take account of these comments in deciding whether to approve a standardized binomial system at its next meeting in October 2020. Note that this system would relate only to the formal names of virus species and not to the names of viruses.


Assuntos
Classificação/métodos , Terminologia como Assunto , Vírus/classificação
16.
Arch Virol ; 165(11): 2737-2748, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32816125

RESUMO

This article reports the changes to virus classification and taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2020. The entire ICTV was invited to vote on 206 taxonomic proposals approved by the ICTV Executive Committee at its meeting in July 2019, as well as on the proposed revision of the ICTV Statutes. All proposals and the revision of the Statutes were approved by an absolute majority of the ICTV voting membership. Of note, ICTV has approved a proposal that extends the previously established realm Riboviria to encompass nearly all RNA viruses and reverse-transcribing viruses, and approved three separate proposals to establish three realms for viruses with DNA genomes.


Assuntos
Classificação/métodos , Vírus/classificação , Terminologia como Assunto , Virologia/organização & administração , Vírus/isolamento & purificação
17.
Arch Virol ; 165(5): 1263-1264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065315

RESUMO

The article Binomial nomenclature for virus species: a consultation, written by Stuart G. Siddell, Peter J. Walker, Elliot J. Lefkowitz, Arcady R. Mushegian, Bas E. Dutilh.

18.
BMC Bioinformatics ; 20(1): 435, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438841

RESUMO

BACKGROUND: Gene and protein interaction data are often represented as interaction networks, where nodes stand for genes or gene products and each edge stands for a relationship between a pair of gene nodes. Commonly, that relationship within a pair is specified by high similarity between profiles (vectors) of experimentally defined interactions of each of the two genes with all other genes in the genome; only gene pairs that interact with similar sets of genes are linked by an edge in the network. The tight groups of genes/gene products that work together in a cell can be discovered by the analysis of those complex networks. RESULTS: We show that the choice of the similarity measure between pairs of gene vectors impacts the properties of networks and of gene modules detected within them. We re-analyzed well-studied data on yeast genetic interactions, constructed four genetic networks using four different similarity measures, and detected gene modules in each network using the same algorithm. The four networks induced different numbers of putative functional gene modules, and each similarity measure induced some unique modules. In an example of a putative functional connection suggested by comparing genetic interaction vectors, we predict a link between SUN-domain proteins and protein glycosylation in the endoplasmic reticulum. CONCLUSIONS: The discovery of molecular modules in genetic networks is sensitive to the way of measuring similarity between profiles of gene interactions in a cell. In the absence of a formal way to choose the "best" measure, it is advisable to explore the measures with different mathematical properties, which may identify different sets of connections between genes.


Assuntos
Biologia Computacional/métodos , Epistasia Genética , Algoritmos , Redes Reguladoras de Genes , Genes Fúngicos , Glicosilação , Anotação de Sequência Molecular , Domínios Proteicos , Saccharomyces cerevisiae/genética , Estatística como Assunto
19.
Arch Virol ; 164(3): 943-946, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663020

RESUMO

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in October 2018. Of note, the ICTV has approved, by an absolute majority, the creation of additional taxonomical ranks above those recognized previously. A total of 15 ranks (realm, subrealm, kingdom, subkingdom, phylum, subphylum, class, subclass, order, suborder, family, subfamily, genus, subgenus, and species) are now available to encompass the entire spectrum of virus diversity. Classification at ranks above genus is not obligatory but can be used by the authors of new taxonomic proposals when scientific justification is provided.


Assuntos
Vírus/classificação , Filogenia , Virologia/organização & administração , Vírus/genética , Vírus/isolamento & purificação
20.
Arch Virol ; 164(9): 2417-2429, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31187277

RESUMO

This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in February 2019. Of note, in addition to seven new virus families, the ICTV has approved, by an absolute majority, the creation of the realm Riboviria, a likely monophyletic group encompassing all viruses with positive-strand, negative-strand and double-strand genomic RNA that use cognate RNA-directed RNA polymerases for replication.


Assuntos
Virologia/organização & administração , Vírus/classificação , Membro de Comitê , RNA Viral/genética , Terminologia como Assunto , Virologia/normas , Vírus/genética , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa