Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Euro Surveill ; 29(24)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873796

RESUMO

In 2003-2023, amid 5,436 Acinetobacter baumannii isolates collected globally through the Multidrug-Resistant Organism Repository and Surveillance Network, 97 were ST19PAS, 34 of which carbapenem-resistant. Strains (n = 32) sampled after 2019 harboured either bla OXA-23, bla OXA-72, and/or bla NDM-5. Phylogenetic analysis of the 97 isolates and 11 publicly available ST19 genomes revealed three sub-lineages of carbapenemase-producing isolates from mainly Ukraine and Georgia, including an epidemic clone carrying all three carbapenemase genes. Infection control and global surveillance of carbapenem-resistant A. baumannii remain important.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Proteínas de Bactérias , beta-Lactamases , Humanos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , República da Geórgia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Ucrânia
2.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021899

RESUMO

An effective human immunodeficiency virus (HIV) vaccine has yet to be developed, and defining immune correlates of protection against HIV infection is of paramount importance to inform future vaccine design. The complement system is a component of innate immunity that can directly lyse pathogens and shape adaptive immunity. To determine if complement lysis of simian immunodeficiency virus (SIV) and/or SIV-infected cells represents a protective immune correlate against SIV infection, sera from previously vaccinated and challenged rhesus macaques were analyzed for the induction of antibody-dependent complement-mediated lysis (ADCML). Importantly, the vaccine regimen, consisting of a replication-competent adenovirus type 5 host-range mutant SIV recombinant prime followed by a monomeric gp120 or oligomeric gp140 boost, resulted in overall delayed SIV acquisition only in females. Here, sera from all vaccinated animals induced ADCML of SIV and SIV-infected cells efficiently, regardless of sex. A modest correlation of SIV lysis with a reduced infection rate in males but not females, together with a reduced peak viremia in all animals boosted with gp140, suggested a potential for influencing protective efficacy. Gag-specific IgG and gp120-specific IgG and IgM correlated with SIV lysis in females, while Env-specific IgM correlated with SIV-infected cell lysis in males, indicating sex differences in vaccine-induced antibody characteristics and function. In fact, gp120/gp140-specific antibody functional correlates between antibody-dependent cellular cytotoxicity, antibody-dependent phagocytosis, and ADCML as well as the gp120-specific IgG glycan profiles and the corresponding ADCML correlations varied depending on the sex of the vaccinees. Overall, these data suggest that sex influences vaccine-induced antibody function, which should be considered in the design of globally effective HIV vaccines in the future.IMPORTANCE An HIV vaccine would thwart the spread of HIV infection and save millions of lives. Unfortunately, the immune responses conferring universal protection from HIV infection are poorly defined. The innate immune system, including the complement system, is an evolutionarily conserved, basic means of protection from infection. Complement can prevent infection by directly lysing incoming pathogens. We found that vaccination against SIV in rhesus macaques induces antibodies that are capable of directing complement lysis of SIV and SIV-infected cells in both sexes. We also found sex differences in vaccine-induced antibody species and their functions. Overall, our data suggest that sex affects vaccine-induced antibody characteristics and function and that males and females might require different immune responses to protect against HIV infection. This information could be used to generate highly effective HIV vaccines for both sexes in the future.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Proteínas do Sistema Complemento/imunologia , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Animais , Proteínas do Sistema Complemento/agonistas , Proteínas do Sistema Complemento/genética , Citotoxicidade Imunológica , Feminino , Regulação da Expressão Gênica , Produtos do Gene env/administração & dosagem , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Soros Imunes/química , Imunização Secundária/métodos , Imunoglobulina G/biossíntese , Imunoglobulina M/biossíntese , Macaca mulatta , Masculino , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Fatores Sexuais , Transdução de Sinais , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas Sintéticas , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
3.
J Virol ; 82(21): 10386-96, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18753211

RESUMO

The promotion of membrane fusion by Newcastle disease virus (NDV) requires an interaction between the viral hemagglutinin-neuraminidase (HN) and fusion (F) proteins, although the mechanism by which this interaction regulates fusion is not clear. The NDV HN protein exists as a tetramer composed of a pair of dimers. Based on X-ray crystallographic studies of the NDV HN globular domain (S. Crennell et al., Nat. Struct. Biol. 7:1068-1074, 2000), it was proposed that the protein undergoes a significant conformational change from an initial structure having minimal intermonomeric contacts to a structure with a much more extensive dimer interface. This conformational change was predicted to be integral to fusion promotion with the minimal interface form required to maintain F in its prefusion state until HN binds receptors. However, no evidence for such a conformational change exists for any other paramyxovirus attachment protein. To test the NDV model, we have engineered a pair of intermonomeric disulfide bonds across the dimer interface in the globular domain of an otherwise non-disulfide-linked NDV HN protein by the introduction of cysteine substitutions for residues T216 and D230. The disulfide-linked dimer is formed both intracellularly and in the absence of receptor binding and is efficiently expressed at the cell surface. The disulfide bonds preclude formation of the minimal interface form of the protein and yet enhance both receptor-binding activity at 37 degrees C and fusion promotion. These results confirm that neither the minimal interface form of HN nor the proposed drastic conformational change in the protein is required for fusion.


Assuntos
Proteína HN/metabolismo , Vírus da Doença de Newcastle/fisiologia , Proteínas Virais/metabolismo , Internalização do Vírus , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Cricetinae , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Proteína HN/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Virais/genética , Ligação Viral
4.
J Extracell Vesicles ; 8(1): 1597603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258878

RESUMO

Biological nanoparticles, including viruses and extracellular vesicles (EVs), are of interest to many fields of medicine as biomarkers and mediators of or treatments for disease. However, exosomes and small viruses fall below the detection limits of conventional flow cytometers due to the overlap of particle-associated scattered light signals with the detection of background instrument noise from diffusely scattered light. To identify, sort, and study distinct subsets of EVs and other nanoparticles, as individual particles, we developed nanoscale Fluorescence Analysis and Cytometric Sorting (nanoFACS) methods to maximise information and material that can be obtained with high speed, high resolution flow cytometers. This nanoFACS method requires analysis of the instrument background noise (herein defined as the "reference noise"). With these methods, we demonstrate detection of tumour cell-derived EVs with specific tumour antigens using both fluorescence and scattered light parameters. We further validated the performance of nanoFACS by sorting two distinct HIV strains to >95% purity and confirmed the viability (infectivity) and molecular specificity (specific cell tropism) of biological nanomaterials sorted with nanoFACS. This nanoFACS method provides a unique way to analyse and sort functional EV- and viral-subsets with preservation of vesicular structure, surface protein specificity and RNA cargo activity.

5.
Sci Rep ; 7(1): 1878, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500324

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles, are 30-800 nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be bright enough for one EV to be detected without the generation of label-associated artifacts. To identify a strategy that robustly labels individual EVs, we used nanoFACS, a high-resolution flow cytometric method that utilizes light scattering and fluorescence parameters along with sample enumeration, to evaluate various labels. Specifically, we compared lipid-, protein-, and RNA-based staining methods and developed a robust EV staining strategy, with the amine-reactive fluorescent label, 5-(and-6)-Carboxyfluorescein Diacetate Succinimidyl Ester, and size exclusion chromatography to remove unconjugated label. By combining nanoFACS measurements of light scattering and fluorescence, we evaluated the sensitivity and specificity of EV labeling assays in a manner that has not been described for other EV detection methods. Efficient characterization of EVs by nanoFACS paves the way towards further study of EVs and their roles in health and disease.


Assuntos
Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Coloração e Rotulagem , Aminas , Animais , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Cromatografia em Gel , Citometria de Fluxo/métodos , Corantes Fluorescentes , Camundongos , Micelas , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa