Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Br J Clin Pharmacol ; 87(2): 598-611, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32520410

RESUMO

AIMS: SAR247799 is a selective G-protein-biased sphingosine-1 phosphate receptor-1 (S1P1 ) agonist with potential to restore endothelial function in vascular pathologies. SAR247799, a first-in-class molecule differentiated from previous S1P1 -desensitizing molecules developed for multiple sclerosis, can activate S1P1 without desensitization and consequent lymphopenia. The aim was to characterize SAR247799 for its safety, tolerability, pharmacokinetics and pharmacodynamics (activation and desensitization). METHODS: SAR247799 was administered orally to healthy subjects in a double-blind, randomized, placebo-controlled study with single (2.5-37.5 mg) or 2-week once-daily (0.5-15 mg) doses. An open-label single dose pilot food-interaction arm with 10 mg SAR247799 in cross-over design was also performed. RESULTS: SAR247799 was well tolerated and, at the higher end of the dose ranges, caused the expected dose-dependent pharmacodynamics associated with S1P1 activation (heart rate reduction) and S1P1 desensitization (lymphocyte count reduction). SAR247799 demonstrated dose-proportional increases in exposure and was eliminated with an apparent terminal half-life of 31.2-33.1 hours. Food had a small effect on the pharmacokinetics of SAR247799. SAR247799 had a low volume of distribution (7-23 L), indicating a potential to achieve dose separation for endothelial vs cardiac S1P1 activation pharmacology. A supratherapeutic dose (10 mg) of SAR247799 produced sustained heart rate reduction over 14 days, demonstrating cardiac S1P1 activation without tachyphylaxis. Sub-lymphocyte-reducing doses (≤5 mg) of SAR247799, which, based on preclinical data, are projected to activate S1P1 and exhibit endothelial-protective properties, had minimal-to-no heart rate reduction and displayed no marked safety findings. CONCLUSION: SAR247799 is suitable for exploring the biological role of endothelial S1P1 activation without causing receptor desensitization.


Assuntos
Receptores de Lisoesfingolipídeo , Esfingosina , Relação Dose-Resposta a Droga , Método Duplo-Cego , Proteínas de Ligação ao GTP , Humanos , Fosfatos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/efeitos adversos
2.
Br J Clin Pharmacol ; 87(5): 2303-2320, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33125753

RESUMO

AIMS: SAR247799 is a G-protein-biased sphingosine-1 phosphate receptor-1 (S1P1 ) agonist designed to activate endothelial S1P1 and provide endothelial-protective properties, while limiting S1P1 desensitization and consequent lymphocyte-count reduction associated with higher doses. The aim was to show whether S1P1 activation can promote endothelial effects in patients and, if so, select SAR247799 doses for further clinical investigation. METHODS: Type-2 diabetes patients, enriched for endothelial dysfunction (flow-mediated dilation, FMD <7%; n = 54), were randomized, in 2 sequential cohorts, to 28-day once-daily treatment with SAR247799 (1 or 5 mg in ascending cohorts), placebo or 50 mg sildenafil (positive control) in a 5:2:2 ratio per cohort. Endothelial function was assessed by brachial artery FMD. Renal function, biomarkers and lymphocytes were measured following 5-week SAR247799 treatment (3 doses) to Zucker diabetic fatty rats and the data used to select the doses for human testing. RESULTS: The maximum FMD change from baseline vs placebo for all treatments was reached on day 35; mean differences vs placebo were 0.60% (95% confidence interval [CI] -0.34 to 1.53%; P = .203) for 1 mg SAR247799, 1.07% (95% CI 0.13 to 2.01%; P = .026) for 5 mg SAR247799 and 0.88% (95% CI -0.15 to 1.91%; P = .093) for 50 mg sildenafil. Both doses of SAR247799 were well tolerated, did not affect blood pressure, and were associated with minimal-to-no lymphocyte reduction and small-to-moderate heart rate decrease. CONCLUSION: These data provide the first human evidence suggesting endothelial-protective properties of S1P1 activation, with SAR247799 being as effective as the clinical benchmark, sildenafil. Further clinical testing of SAR247799, at sub-lymphocyte-reducing doses (≤5 mg), is warranted in vascular diseases associated with endothelial dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Esfingosina , Animais , Artéria Braquial , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endotélio Vascular , Proteínas de Ligação ao GTP , Humanos , Fosfatos , Ratos , Ratos Zucker , Vasodilatação
3.
Kidney Int ; 87(4): 771-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25469849

RESUMO

Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.


Assuntos
Angiotensina II/metabolismo , Córtex Renal/irrigação sanguínea , Miócitos de Músculo Liso/metabolismo , Proteínas RGS/metabolismo , Traumatismo por Reperfusão/metabolismo , Vasoconstrição , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Aorta/citologia , Arteríolas/fisiopatologia , Células Cultivadas , Quimiocina CCL5/metabolismo , Humanos , Córtex Renal/metabolismo , Macrófagos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas RGS/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Circulação Renal , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais
4.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L693-701, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24077945

RESUMO

T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration. To examine the role of endogenous RGS3 in vivo, mice deficient in the RGS domain (RGS3(ΔRGS)) were generated and tested in an experimental model of asthma. Compared with littermate controls, the inflammation in the RGS3(ΔRGS) mice was characterized by increased T cell numbers and the striking development of perivascular lymphoid structures. Surprisingly, while innate inflammatory cells were also increased in the lungs of RGS3(ΔRGS) mice, eosinophil numbers and Th2 cytokine production were equivalent to control mice. In contrast, T cell numbers in the draining lymph nodes (dLN) were reduced in the RGS3(ΔRGS), demonstrating a redistribution of T cells from the dLN to the lungs via increased RGS3(ΔRGS) T cell migration. Together these novel findings show a nonredundant role for endogenous RGS3 in controlling T cell migration in vitro and in an in vivo model of inflammation.


Assuntos
Movimento Celular , Inflamação/etiologia , Proteínas RGS/fisiologia , Mucosa Respiratória/imunologia , Linfócitos T/imunologia , Células Th2/imunologia , Animais , Apoptose , Western Blotting , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pyroglyphidae/patogenicidade , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Células Th2/metabolismo , Células Th2/patologia
5.
Circ Res ; 106(9): 1516-23, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20360254

RESUMO

RATIONALE: Tribbles (TRB)3 is an intracellular pseudokinase that modulates the activity of several signal transduction cascades. TRB3 has been reported to inhibit the activity of Akt protein kinases. TRB3 gene expression is highly regulated in many cell types, and amino acid starvation, hypoxia, or endoplasmic reticulum (ER) stress promotes TRB3 expression in noncardiac cells. OBJECTIVE: The objective of this work was to examine TRB3 expression and function in cultured cardiac myocytes and in mouse heart. METHODS AND RESULTS: Agents that induced ER stress increased TRB3 expression in cultured cardiac myocytes while blocking insulin-stimulated Akt activation in these cells. Knockdown of TRB3 in cultured cardiac myocytes reversed the effects of ER stress on insulin signaling. Experimental myocardial infarction led to increased TRB3 expression in murine heart tissue in the infarct border zone suggesting that ER stress may play a role in pathological cardiac remodeling. Transgenic mice with cardiac-specific overexpression of TRB3 were generated and they exhibited normal contractile function but altered cardiac signal transduction and metabolism with reduced cardiac glucose oxidation rates. Transgenic TRB3 mice were also sensitized to infarct expansion and cardiac myocyte apoptosis in the infarct border zone after myocardial infarction. CONCLUSIONS: These results demonstrate that TRB3 induction is a significant aspect of the ER stress response in cardiac myocytes and that TRB3 antagonizes cardiac glucose metabolism and cardiac myocyte survival.


Assuntos
Retículo Endoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Fisiológico , Canais de Cátion TRPM/genética
6.
Cell Metab ; 4(5): 377-89, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17084711

RESUMO

Metabolic syndrome is associated with insulin resistance and atherosclerosis. Here, we show that deficiency of one or two alleles of ATM, the protein mutated in the cancer-prone disease ataxia telangiectasia, worsens features of the metabolic syndrome, increases insulin resistance, and accelerates atherosclerosis in apoE-/- mice. Transplantation with ATM-/- as compared to ATM+/+ bone marrow increased vascular disease. Jun N-terminal kinase (JNK) activity was increased in ATM-deficient cells. Treatment of ATM+/+apoE-/- mice with low-dose chloroquine, an ATM activator, decreased atherosclerosis. In an ATM-dependent manner, chloroquine decreased macrophage JNK activity, decreased macrophage lipoprotein lipase activity (a proatherogenic consequence of JNK activation), decreased blood pressure, and improved glucose tolerance. Chloroquine also improved metabolic abnormalities in ob/ob and db/db mice. These results suggest that ATM-dependent stress pathways mediate susceptibility to the metabolic syndrome and that chloroquine or related agents promoting ATM activity could modulate insulin resistance and decrease vascular disease.


Assuntos
Cloroquina/uso terapêutico , Proteínas de Ligação a DNA/deficiência , Doenças Metabólicas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/deficiência , Transdução de Sinais , Estresse Fisiológico/metabolismo , Proteínas Supressoras de Tumor/deficiência , Animais , Apolipoproteínas E/genética , Proteínas Mutadas de Ataxia Telangiectasia , Aterosclerose/tratamento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Macrófagos/efeitos dos fármacos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Knockout , Mutação , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
7.
Kidney Int ; 80(3): 263-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21412219

RESUMO

Acute kidney dysfunction after ischemia-reperfusion injury (IRI) may be a consequence of persistent intrarenal vasoconstriction. Regulators of G-protein signaling (RGSs) are GTPase activators of heterotrimeric G proteins that can regulate vascular tone. RGS4 is expressed in vascular smooth muscle cells in the kidney; however, its protein levels are low in many tissues due to N-end rule-mediated polyubiquitination and proteasomal degradation. Here, we define the role of RGS4 using a mouse model of IRI comparing wild-type (WT) with RGS4-knockout mice. These knockout mice were highly sensitized to the development of renal dysfunction following injury exhibiting reduced renal blood flow as measured by laser-Doppler flowmetry. The kidneys from knockout mice had increased renal vasoconstriction in response to endothelin-1 infusion ex vivo. The intrinsic renal activity of RGS4 was measured following syngeneic kidney transplantation, a model of cold renal IRI. The kidneys transplanted between knockout and WT mice had significantly reduced reperfusion blood flow and increased renal cell death. WT mice administered MG-132 (a proteasomal inhibitor of the N-end rule pathway) resulted in increased renal RGS4 protein and in an inhibition of renal dysfunction after IRI in WT but not in knockout mice. Thus, RGS4 antagonizes the development of renal dysfunction in response to IRI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Rim/enzimologia , Proteínas RGS/metabolismo , Circulação Renal , Traumatismo por Reperfusão/enzimologia , Vasoconstrição , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/fisiopatologia , Animais , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , Endotelina-1/farmacologia , Ativação Enzimática , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/fisiopatologia , Rim/cirurgia , Transplante de Rim , Fluxometria por Laser-Doppler , Leupeptinas/farmacologia , Ligadura , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrectomia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Proteínas RGS/deficiência , Proteínas RGS/genética , Circulação Renal/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
8.
Cell Physiol Biochem ; 27(5): 487-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21691066

RESUMO

BACKGROUND/AIMS: Pressure overload stimulation is known to elicit disturbances in the endoplasmic reticulum (ER), which leads to ER stress (ERS). p38 mitogen-activated protein kinase (MAPK) plays an important role in mediating apoptotic processes, however, the roles of this kinase in activating ERS-initiated apoptosis in pressure-overloaded hearts are largely unknown. METHODS: We clarified the role of p38α MAPK in ERS-associated apoptosis by subjecting transgenic mice displaying cardiac specific dominant negative (DN) mutant p38α MAPK over-expression to seven day pressure overload. RESULTS: Seven days pressure overload resulted in the same extent of cardiac hypertrophy and ERS in the wild-type (WT) and DN p38α mice compared with the sham mice. It also activated inositol-requiring enzyme (Ire)-1α and its downstream molecule, tumor necrosis factor receptor (TNFR)-associated factor (TRAF)2 in the WT and DN p38α mice compared with the sham mice. Interestingly, increased myocardial apoptosis and the up-regulation of CCAAT/enhancer binding protein homology protein (CHOP) expression compared with those in the sham mice were found in the aortic-banded WT mice, but not in the DN p38α mice. CONCLUSION: Partial inhibition of p38α protein blocked the activation of CHOP-mediated apoptotic processes during pressure overload by partially inhibiting signaling from the Ire-1α/TRAF2 to its down-stream molecule, CHOP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/metabolismo , Proteínas de Membrana/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aorta/lesões , Aorta/metabolismo , Aorta/patologia , Apoptose , Cardiomegalia/etiologia , Cardiomegalia/genética , Cardiomegalia/patologia , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Expressão Gênica , Genes Dominantes , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Tamanho do Órgão , Pressão/efeitos adversos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fator de Transcrição CHOP/genética , Regulação para Cima
9.
Circ Res ; 105(2): 148-57, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19542016

RESUMO

Macrophage-derived foam cells are thought to play a major role in atherosclerotic lesion formation and progression. An automated assay was established to evaluate the uptake of fluorescently labeled oxidized low-density lipoprotein (oxLDL) by a monocyte/macrophage cell line. The assay was used to screen 480 known bioactive compounds. Twenty-two active compounds were identified. Efficacy studies in peritoneal macrophages demonstrated a high rate of concordance with the initial screening results. Inhibitory compounds confirmed important previous findings and identified new drugs of interest including: 3 blockers of nuclear factor kappab activation, 2 protein kinase C inhibitors, a phospholipase C inhibitor, and 2 antipsychotic drugs. In addition, an opioid receptor agonist was found to increase the oxLDL uptake of macrophages. The involvement of nuclear factor kappaB in oxLDL uptake was validated in peritoneal macrophages in vivo. The results support a model in which oxLDL uptake is dependent on the activation of multiple intracellular signaling pathways that culminate in actin-mediated lipoprotein internalization.


Assuntos
Bioensaio , Descoberta de Drogas/métodos , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Animais , Antipsicóticos/farmacologia , Automação , Transporte Biológico , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Células Espumosas/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Receptores Opioides/agonistas , Sulfonas/farmacologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
10.
Pediatr Cardiol ; 32(3): 317-22, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21279637

RESUMO

Akt proteins are serine/threonine protein kinases that participate in several important intracellular signal transduction cascades. Akt1 and Akt2 are expressed in cardiomyocytes, and both are activated by the action of a variety of growth factors and extracellular ligands. In work with genetically modified mice that had targeted disruption of the genes encoding Akt1 or Akt2, findings showed that Akt1 specifically regulated the physiologic growth of cardiomyocytes that occurred in response to exercise training. In contrast, Akt2 does not regulate physiologic growth but instead regulates glucose metabolism in response to insulin stimulation in cardiomyocytes. Furthermore, Akt2 plays a critical role in antagonizing cardiomyocyte apoptosis that occurs in response to a variety of stimuli, including pathologic remodeling after experimental myocardial infarction. In addition, the protein tribbles 3 (TRB3), an Akt antagonist, was found to be expressed in cardiomyocytes and to be induced by stimuli that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-mediated antagonism of Akt signaling in cardiomyocytes was dependent on TRB3 induction. Finally, myocardial infarction caused endoplasmic reticulum stress in the infarct border zone that was associated with TRB3 induction. These results demonstrate the differential roles of Akt family members and the importance of Akt2 in cardiomyocyte survival.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Retículo Endoplasmático/enzimologia , Humanos , Camundongos , Miócitos Cardíacos/enzimologia , Transdução de Sinais
11.
J Mol Cell Cardiol ; 49(6): 931-40, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20728450

RESUMO

Patients with diabetes mellitus can develop cardiac dysfunction in the absence of underlying coronary artery disease or hypertension; a condition defined as diabetic cardiomyopathy. Mice lacking the intracellular protein kinase Akt2 develop a syndrome that is similar to diabetes mellitus type 2. Expression profiling of akt2(-/-) myocardium revealed that Rab4a, a GTPase involved in glucose transporter 4 translocation and ß-adrenergic receptor (ßAR) recycling to the plasma membrane, was significantly induced. We therefore hypothesized that Akt2 deficiency increases myocardial ß-adrenergic sensitivity. Confirmatory analysis revealed up-regulation of Rab4a mRNA and protein in akt2(-/-) myocardium. In cultured cardiomyocyte experiments, Rab4a was induced by pharmacological inhibition of Akt as well as by specific knockdown of Akt2 with siRNA. Isolated akt2(-/-) hearts were hypersensitive to isoproterenol (ISO) but exhibited normal sensitivity to forskolin. Prolonged ISO treatment led to increased cardiac hypertrophy in akt2(-/-) mice compared to wild type mice. In addition, spontaneous hypertrophy was noted in aged akt2(-/-) hearts that was inhibited by treatment with the ßAR blocker propranolol. In agreement with previous results demonstrating increased fatty acid oxidation rates in akt2(-/-) myocardium, we found increased peroxisome proliferator-activated receptor α (PPARα) activity in the hearts of these animals. Interestingly, increased myocardial Rab4a expression was present in mice with cardiac-specific overexpression of PPARα and was also observed upon stimulation of PPARα activity in cultured cardiomyocytes. Accordingly, propranolol attenuated the development of cardiac hypertrophy in the PPARα transgenic mice as well. Our results indicate that reduced Akt2 leads to up-regulation of Rab4a expression in cardiomyocytes in a cell-autonomous fashion that may involve activation of PPARα. This maladaptive response is associated with hypersensitivity of akt2(-/-) myocardium to ß-adrenergic stimulation.


Assuntos
Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-akt/deficiência , Receptores Adrenérgicos beta/metabolismo , Proteínas rab4 de Ligação ao GTP/biossíntese , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Células Cultivadas , Indução Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Isoproterenol/farmacologia , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , PPAR alfa/metabolismo , Propranolol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
12.
J Biol Chem ; 284(47): 32434-43, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19767393

RESUMO

The L-type calcium channel (LTCC) has a variety of physiological roles that are critical for the proper function of many cell types and organs. Recently, a member of the zinc-regulating family of proteins, ZnT-1, was recognized as an endogenous inhibitor of the LTCC, but its mechanism of action has not been elucidated. In the present study, using two-electrode voltage clamp recordings in Xenopus oocytes, we demonstrate that ZnT-1-mediated inhibition of the LTCC critically depends on the presence of the LTCC regulatory beta-subunit. Moreover, the ZnT-1-induced inhibition of the LTCC current is also abolished by excess levels of the beta-subunit. An interaction between ZnT-1 and the beta-subunit, as demonstrated by co-immunoprecipitation and by fluorescence resonance energy transfer, is consistent with this result. Using surface biotinylation and total internal reflection fluorescence microscopy in HEK293 cells, we show a ZnT-1-dependent decrease in the surface expression of the pore-forming alpha(1)-subunit of the LTCC. Similarly, a decrease in the surface expression of the alpha(1)-subunit is observed following up-regulation of the expression of endogenous ZnT-1 in rapidly paced cultured cardiomyocytes. We conclude that ZnT-1-mediated inhibition of the LTCC is mediated through a functional interaction of ZnT-1 with the LTCC beta-subunit and that it involves a decrease in the trafficking of the LTCC alpha(1)-subunit to the surface membrane.


Assuntos
Canais de Cálcio Tipo L/química , Proteínas de Transporte/fisiologia , Animais , Células CHO , Proteínas de Transporte/metabolismo , Cricetinae , Cricetulus , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Biológicos , Miócitos Cardíacos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Xenopus
13.
Cell Physiol Biochem ; 26(2): 167-78, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20798500

RESUMO

BACKGROUND/AIMS: Excessive endoplasmic reticulum stress (ERS) triggers apoptosis in various conditions including diabetic cardiomyopathy and pressure overload-induced cardiac hypertrophy and heart failure. The primary function of 14-3-3 protein is to inhibit apoptosis, but the roles of this protein in protecting against cardiac ERS and apoptosis are largely unknown. METHODS: We investigated the roles of 14-3-3 protein in vivo during cardiac ERS and apoptosis induced by pressure overload or thapsigargin injection using transgenic (TG) mice that showed cardiac-specific expression of dominant negative (DN) 14-3-3eta. RESULTS: Cardiac positive apoptotic cells and the expression of glucose-regulated protein (GRP)78, inositol-requiring enzyme (Ire)1alpha, tumor necrosis factor receptor (TNFR)-associated factor (TRAF)2, CCAAT/enhancer binding protein homology protein (CHOP), caspase-12, and cleaved caspase-12 protein were significantly increased in the pressure-overload induced DN 14-3-3eta mice compared with that in the WT mice. Furthermore, thapsigargin injection significantly increased the expression of GRP78 and TRAF2 expression in DN 14-3-3eta mice compared with that in the WT mice. CONCLUSION: The enhancement of 14-3-3 protein may provide a novel protective therapy against cardiac ERS and ERS-initiated apoptosis, at least in part, through the regulation of CHOP and caspase-12 via the Ire1alpha/TRAF2 pathway.


Assuntos
Proteínas 14-3-3/metabolismo , Apoptose , Retículo Endoplasmático/metabolismo , Proteínas 14-3-3/fisiologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cardiomegalia/metabolismo , Caspase 12/metabolismo , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Pressão , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Fator 2 Associado a Receptor de TNF/metabolismo , Tapsigargina/farmacologia
14.
Mol Cell Biol ; 27(4): 1455-66, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17145769

RESUMO

14-3-3 family members are intracellular dimeric phosphoserine-binding proteins that regulate signal transduction, cell cycle, apoptotic, and metabolic cascades. Previous work with global 14-3-3 protein inhibitors suggested that these proteins play a critical role in antagonizing apoptotic cell death in response to provocative stimuli. To determine the specific role of one family member in apoptosis, mice were generated with targeted disruption of the 14-3-3tau gene. 14-3-3tau(-/-) mice did not survive embryonic development, but haploinsufficient mice appeared normal at birth and were fertile. Cultured adult cardiomyocytes derived from 14-3-3tau(+/-) mice were sensitized to apoptosis in response to hydrogen peroxide or UV irradiation. 14-3-3tau(+/-) mice were intolerant of experimental myocardial infarction and developed pathological ventricular remodeling with increased cardiomyocyte apoptosis. ASK1, c-jun NH(2)-terminal kinase, and p38 mitogen-activated protein kinase (MAPK) activation was increased, but extracellular signal-regulated kinase MAPK activation was reduced, in 14-3-3tau(+/-) cardiac tissue. Inhibition of p38 MAPK increased survival in 14-3-3tau(+/-) mice subjected to myocardial infarction. These results demonstrate that 14-3-3tau plays a critical antiapoptotic function in cardiomyocytes and that therapeutic agents that increase 14-3-3tau activity may be beneficial to patients with myocardial infarction.


Assuntos
Proteínas 14-3-3/metabolismo , Miócitos Cardíacos/citologia , Fosfosserina/metabolismo , Proteínas 14-3-3/deficiência , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ecocardiografia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Marcação de Genes , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
15.
J Pharmacol Sci ; 113(4): 325-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20644335

RESUMO

Diabetic cardiomyopathy and nephropathy induce endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis. The primary function of 14-3-3 protein is to inhibit apoptosis, but the roles of this protein in protecting against cardiac ERS and apoptosis in the diabetic heart are largely unknown. In this study, we investigated the in vivo role of 14-3-3 protein in diabetic ERS and apoptosis using streptozotocin (STZ)-induced transgenic mice that showed cardiac-specific expression of a dominant negative (DN) 14-3-3eta protein mutant. The expression levels of cardiac glucose-regulated protein (GRP) 78, inositol-requiring enzyme (Ire) 1alpha, and tumor necrosis factor receptor (TNFR)-associated factor (TRAF) 2 protein were significantly increased in the diabetic DN 14-3-3eta mice compared with the diabetic wild-type. Moreover, cardiac apoptosis and the expression of CCAAT/enhancer binding protein homology protein (CHOP), caspase-12, and cleaved caspase-12 protein were significantly increased in the diabetic DN 14-3-3eta mice. In conclusion, partial depletion of 14-3-3 protein in the diabetic heart exacerbates cardiac ERS and activates ERS-induced apoptosis pathways, at least in part, through the regulation of CHOP and caspase-12 via the Ire1alpha/TRAF2 pathway. The enhancement of 14-3-3 protein expression can be used as a novel protective therapy against ERS and ERS-initiated apoptosis in the diabetic heart.


Assuntos
Proteínas 14-3-3/fisiologia , Apoptose/fisiologia , Diabetes Mellitus Experimental/patologia , Retículo Endoplasmático/metabolismo , Proteínas 14-3-3/genética , Animais , Western Blotting , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/patologia
16.
Sci Signal ; 13(634)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487716

RESUMO

Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than ß-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.


Assuntos
Células Endoteliais/metabolismo , Nefropatias/tratamento farmacológico , Rim/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptores de Esfingosina-1-Fosfato/agonistas , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Linfócitos/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Suínos
17.
Cardiovasc Res ; 116(2): 329-338, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31038167

RESUMO

AIMS: Despite improvements in patient identification and management, heart failure (HF) remains a major public health burden and an important clinical challenge. A variety of animal and human studies have provided evidence suggesting a central role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the development of pathological cardiac remodelling and HF. Here, we describe a new potent, selective, and orally available CaMKII inhibitor. METHODS AND RESULTS: Chemical optimization led to the identification of RA306 as a selective CaMKII inhibitor. This compound was found potent on the cardiac CaMKII isoforms delta and gamma (IC50 in the 10 nM range), with pharmacokinetic properties allowing oral administration in animal models of HF. RA306 was administered to diseased mice carrying a mutation in alpha-actin that is responsible for dilated cardiomyopathy (DCM) in humans. In two separate studies, RA306 was orally administered at 30 mg/kg either for 2 weeks (twice a day) or for 2 months (once a day). Echocardiography monitoring showed that RA306 significantly improved cardiac function (ejection fraction and cardiac output) as compared to vehicle. These disease modifying effects of RA306 were associated with inhibition of cardiac phosphorylation of phospholamban (PLN) at threonine-17, indicating reduced cardiac CaMKII activity. CONCLUSION: This work supports the feasibility of identifying potent orally available CaMKII inhibitors suitable for clinical use to treat heart disease.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomiopatia Dilatada/tratamento farmacológico , Morfolinas/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Actinas/genética , Administração Oral , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos Transgênicos , Morfolinas/farmacocinética , Mutação , Miócitos Cardíacos/enzimologia , Fosforilação , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Recuperação de Função Fisiológica
18.
Circulation ; 118(6): 658-66, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18645058

RESUMO

BACKGROUND: Angioplasty and stent delivery are performed to treat atherosclerotic vascular disease but often cause deleterious neointimal lesion formation. Previously, growth factor receptor-bound protein 2 (Grb2), an intracellular linker protein, was shown to be essential for neointima formation and for p38 mitogen-activated protein kinase (MAPK) activation in vascular smooth muscle cells (SMCs). In this study, the role of vascular SMC p38alpha MAPK in neointimal development was examined. METHODS AND RESULTS: Compound transgenic mice were generated with doxycycline-inducible SMC-specific expression of dominant-negative p38alpha MAPK (DN-p38alpha). Doxycycline treatment resulted in the expression of DN-p38alpha mRNA and protein in transgenic arteries. Doxycycline-treated compound transgenic mice were resistant to neointima formation 21 days after carotid injury and showed reduced arterial p38 MAPK activation. To explore the mechanism by which p38alpha MAPK promotes neointima formation, an in vitro SMC culture system was used. Inhibition of p38alpha MAPK in cultured SMCs by treatment with SB202190 or small interfering RNA blocked platelet-derived growth factor-induced SMC proliferation, DNA replication, phosphorylation of the retinoblastoma protein, and induction of minichromosome maintenance protein 6. CONCLUSIONS: SMC p38alpha MAPK activation is required for neointima formation, perhaps because of its ability to promote retinoblastoma protein phosphorylation and minichromosome maintenance protein 6 expression.


Assuntos
Angioplastia/efeitos adversos , Lesões das Artérias Carótidas/metabolismo , Músculo Liso Vascular/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Lesões das Artérias Carótidas/terapia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Componente 6 do Complexo de Manutenção de Minicromossomo , Músculo Liso Vascular/lesões , Fosforilação , RNA Interferente Pequeno , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia , Túnica Íntima/enzimologia , Túnica Íntima/lesões
19.
Dev Cell ; 2(5): 567-78, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12015965

RESUMO

C. elegans cdf-1 was identified in a genetic screen for regulators of Ras-mediated signaling. CDF-1 is a cation diffusion facilitator protein that is structurally and functionally similar to vertebrate ZnT-1. These proteins have an evolutionarily conserved function as positive regulators of the Ras pathway, and the Ras pathway has an evolutionarily conserved ability to respond to CDF proteins. CDF proteins regulate Ras-mediated signaling by promoting Zn(2+) efflux and reducing the concentration of cytosolic Zn(2+), and cytosolic Zn(2+) negatively regulates Ras-mediated signaling. Physiological concentrations of Zn(2+) cause a significant inhibition of Ras-mediated signaling. These findings suggest that Zn(2+) negatively regulates a conserved element of the signaling pathway and that Zn(2+) regulation is important for maintaining the inactive state of the Ras pathway.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Zinco/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Sequência Conservada , Feminino , Expressão Gênica , Transporte de Íons , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Vulva/crescimento & desenvolvimento , Zinco/farmacologia
20.
Kidney Int ; 75(8): 800-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19165175

RESUMO

Chronic kidney disease is often complicated by uremic cardiomyopathy that consists of left ventricular hypertrophy and interstitial fibrosis. It is thought that hypertension and volume overload are major causes of this disease, but here we sought to identify additional mechanisms using a mouse model of chronic renal insufficiency. Mice with a remnant kidney developed an elevated blood urea nitrogen by 1 week, as expected, and showed progressive cardiac hypertrophy and fibrosis at 4 and 8 weeks even though their blood pressures were not elevated nor did they show signs of volume overload. Cardiac extracellular signal-regulated kinase (ERK) was activated in the uremic animals at 8 weeks. There was also an increased phosphorylation of S6 kinase, which is often mediated by activation of the mammalian target of rapamycin (mTOR). To test the involvement of this pathway, we treated these uremic mice with rapamycin and found that it reduced cardiac hypertrophy. Reduction of blood pressure, however, by hydralazine had no effect. These studies suggest that uremic cardiomyopathy is mediated by activation of a pathway that involves the mTOR pathway.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiomiopatia Hipertrófica/etiologia , Proteínas de Transporte/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sirolimo/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hidralazina/farmacologia , Camundongos , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa