Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 127: 111387, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38134593

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating neurodegenerative disease that negatively affects neurotransmission. It can be pathologically mimicked by experimental autoimmune encephalomyelitis (EAE) animal model. ATP-sensitive potassium channels (KATP) plays a crucial role in the control of neuronal damage, however their role in MS are still obscure. Additionally, Carvedilol showed a promising neuroprotective activity against several neurological disorders. Therefore, the present study aimed to investigate the potential neuroprotective effect of KATP channel opener (nicorandil) as well as α and ß adrenoceptor antagonist (Carvedilol) against EAE induced neurodegeneration in mice. Mice was treated with nicorandil (6 mg/kg/day; p.o.) and carvedilol (10 mg/kg/day; p.o.) for 14 days. Nicorandil and carvedilol showed improvement in clinical scoring, behaviour and motor coordination as established by histopathological investigation and immunohistochemical detection of MBP. Furthermore, both treatments downregulated the protein expression of TLR4/ MYD88/TRAF6 signalling cascade with downstream inhibition of (pT183/Y185)-JNK/p38 (pT180/Y182)-MAPK axis leading to reduction of neuroinflammatory status, as witnessed by reduction of NF-κB, TNF-α, IL-1ß and IL-6 contents. Moreover, nicorandil and carvedilol attenuated oxidative damage by increasing Nrf2 content and SOD activity together with reduction of MDA content. In addition, an immunomodulating effect via inhibiting the gene expression of CD4, TGF-ß, and IL-17 as well as TGF-ß, IL-17, and IL-23 contents along with anti-apoptotic effect by decreasing Bax protein expression and Caspase-3 content and increasing Bcl-2 protein expression was observed with nicorandil and carvedilol treatments. In conclusion, nicorandil and carvedilol exerted a neuroprotective activity against EAE induced neuronal loss via inhibition of TLR4/MYD88/TRAF6/JNK/p38-MAPK axis besides antioxidant and anti-apoptotic effects.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Nicorandil/farmacologia , Nicorandil/uso terapêutico , NF-kappa B/metabolismo , Carvedilol/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-17/metabolismo , Esclerose Múltipla/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Trifosfato de Adenosina
2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065818

RESUMO

Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-ß/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1ß and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-ß/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.

3.
Front Pharmacol ; 12: 740966, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002694

RESUMO

GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis; the latter is an essential factor for iNOS activation that contributes neuronal loss in Huntington's disease (HD). The aim of the study was to investigate the neuroprotective effect of 2,4-diamino-6-hydroxypyrimidine (DAHP), GTPCH I enzyme inhibitor, against neuronal loss in 3-nitropropinic acid (3-NP)-induced HD in rats and to reveal the possible involved mechanisms mediated through PI3K/Akt axis and its correlation to Mas receptor (MasR). Rats received 3-NP (10 mg/kg/day; i.p.) with or without administration of DAHP (0.5 g/kg/day; i.p.) or wortmannin (WM), a PI3K inhibitor, (15 µg/kg/day; i.v.) for 14 days. DAHP improved cognitive, memory, and motor abnormalities induced by 3-NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. Moreover, DAHP treatment inhibited GTPCH I activity, resulting in decreased BH4 levels and iNOS activation. Also, DAHP upregulated the protein expression of survival protein; p85/p55 (pY458/199)-PI3K and pS473-Akt that, in turn, boosted the activation of striatal neurotrophic factors and receptor, pS133-CREB, BDNF and pY515-TrKB, which positively affect MasR protein expression and improve mitochondrial dysfunction, as indicated by enhancing both SDH and PGC-1α levels. Indeed, DAHP attenuates oxidative stress by increasing SOD activity and Nrf2 expression in addition to reducing neuro-inflammatory status by inhibiting NF-κB p65 and TNF-α expression. Interestingly, all the previous effects were blocked by co-administration of WM with DAHP. In conclusion, DAHP exerts neuroprotective effect against neuronal loss induced by 3-NP administration via inhibition of GTPCH I and iNOS activity and activation of MasR/PI3K/Akt/CREB/BDNF/TrKB axis besides its antioxidant and anti-inflammatory effect.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa