Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Basic Res Cardiol ; 116(1): 22, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33755785

RESUMO

Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.


Assuntos
Adenosina/metabolismo , Doenças Cardiovasculares/metabolismo , Circulação Coronária , Vasos Coronários/metabolismo , Hemodinâmica , Microcirculação , Microvasos/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Vasos Coronários/fisiopatologia , Humanos , Microvasos/fisiopatologia , Canais de Potássio/metabolismo , Transdução de Sinais
2.
J Mol Cell Cardiol ; 140: 1-9, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32057736

RESUMO

Diabetes is an important risk factor for the development of cardiovascular disease including atherosclerosis and ischemic heart disease. Vascular complications including macro- and micro-vascular dysfunction are the leading causes of morbidity and mortality in diabetes. Disease mechanisms at present are unclear and no ideal therapies are available, which urgently calls for the identification of novel therapeutic targets/agents. An altered nucleotide- and nucleoside-mediated purinergic signaling has been implicated to cause diabetes-associated vascular dysfunction in major organs. Alteration of both purinergic P1 and P2 receptor sensitivity rather than the changes in receptor expression accounts for vascular dysfunction in diabetes. Activation of P2X7 receptors plays a crucial role in diabetes-induced retinal microvascular dysfunction. Recent findings have revealed that both ecto-nucleotidase CD39, a key enzyme hydrolyzing ATP, and CD73, an enzyme regulating adenosine turnover, are involved in the renal vascular injury in diabetes. Interestingly, erythrocyte dysfunction in diabetes by decreasing ATP release in response to physiological stimuli may serve as an important trigger to induce vascular dysfunction. Nucleot(s)ide-mediated purinergic activation also exerts long-term actions including inflammatory and atherogenic effects in hyperglycemic and diabetic conditions. This review highlights the current knowledge regarding the altered nucleot(s)ide-mediated purinergic signaling as an important disease mechanism for the diabetes-associated vascular complications. Better understanding the role of key receptor-mediated signaling in diabetes will provide more insights into their potential as targets for the treatment.


Assuntos
Aterosclerose/metabolismo , Diabetes Mellitus/metabolismo , Angiopatias Diabéticas/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X7/metabolismo , 5'-Nucleotidase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apirase/metabolismo , Eritrócitos/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Vasos Retinianos/metabolismo , Transdução de Sinais
3.
Purinergic Signal ; 16(3): 415-426, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32789792

RESUMO

Animal models of asthma have shown that limonene, a naturally occurring terpene in citrus fruits, can reduce inflammation and airway reactivity. However, the mechanism of these effects is unknown. We first performed computational and molecular docking analyses that showed limonene could bind to both A2A and A2B receptors. The pharmacological studies were carried out with A2A adenosine receptor knock-out (A2AKO) and wild-type (WT) mice using ovalbumin (OVA) to generate the asthma phenotype. We investigated the effects of limonene on lung inflammation and airway responsiveness to methacholine (MCh) and NECA (nonselective adenosine analog) by administering limonene as an inhalation prior to OVA aerosol challenges in one group of allergic mice for both WT and KO. In whole-body plethysmography studies, we observed that airway responsiveness to MCh in WT SEN group was significantly lowered upon limonene treatment but no effect was observed in A2AKO. Limonene also attenuated NECA-induced airway responsiveness in WT allergic mice with no effect being observed in A2AKO groups. Differential BAL analysis showed that limonene reduced levels of eosinophils in allergic WT mice but not in A2AKO. However, limonene reduced neutrophils in sensitized A2AKO mice, suggesting that it may activate A2B receptors as well. These data indicate that limonene-induced reduction in airway inflammation and airway reactivity occurs mainly via activation of A2AAR but A2B receptors may also play a supporting role.


Assuntos
Asma/tratamento farmacológico , Inflamação/tratamento farmacológico , Limoneno/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Asma/induzido quimicamente , Asma/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Limoneno/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Ovalbumina , Receptor A2A de Adenosina/genética
4.
Pharmacol Res ; 141: 32-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553823

RESUMO

Uridine adenosine tetraphosphate (Up4A), biosynthesized by activation of vascular endothelial growth factor receptor (VEGFR) 2, was initially identified as a potent endothelium-derived vasoconstrictor in perfused rat kidney. Subsequently, the effect of Up4A on vascular tone regulation was intensively investigated in arteries isolated from different vascular beds in rodents including rat pulmonary arteries, aortas, mesenteric and renal arteries as well as mouse aortas, in which Up4A produces vascular contraction. In contrast, Up4A produces vascular relaxation in porcine coronary small arteries and rat aortas. Intravenous infusion of Up4A into conscious rats or mice decreases blood pressure, and intravenous bolus injection of Up4A into anesthetized mice increases coronary blood flow, indicating an overall vasodilator influence in vivo. Although Up4A is the first dinucleotide described that contains both purine and pyrimidine moieties, its cardiovascular effects are exerted mainly through activation of purinergic receptors. These effects not only encompass regulation of vascular tone, but also endothelial angiogenesis, smooth muscle cell proliferation and migration, and vascular calcification. Furthermore, this review discusses a potential role for Up4A in cardiovascular pathophysiology, as plasma levels of Up4A are elevated in juvenile hypertensive patients and Up4A-mediated vascular purinergic signaling changes in cardiovascular disease such as hypertension, diabetes, atherosclerosis and myocardial infarction. Better understanding the vascular effect of the novel dinucleotide Up4A and the purinergic signaling mechanisms mediating its effects will enhance its potential as target for treatment of cardiovascular disease.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Fosfatos de Dinucleosídeos/fisiologia , Receptores Purinérgicos/fisiologia , Animais , Sistema Cardiovascular , Humanos , Transdução de Sinais
5.
J Pharmacol Sci ; 141(1): 64-69, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640919

RESUMO

Activation of both adenosine A2A and A2B receptors (A2BR) contributes to coronary vasodilation. We previously demonstrated that uridine adenosine tetraphosphate (Up4A) is a novel vasodilator in the porcine coronary microcirculation, acting mainly on A2AR in smooth muscle cells (SMC). We further investigated whether activation of A2BR is involved in Up4A-mediated coronary SMC relaxation. Both A2AR and A2BR may stimulate H2O2 production leading to activation of KATP channels in SMCs, we also studied the involvement of H2O2 and KATP channels in Up4A-mediated effect. Coronary small arteries dissected from the apex of porcine hearts were mounted on wire myograph for Up4A concentration responses. Up4A-induced coronary SMC relaxation was attenuated by A2AR but not A2BR antagonism or non-selective P2R antagonism, despite greater endogenous A2BR expression vs. A2AR in both coronary small arteries and primary cultured coronary SMCs. Moreover, Up4A-induced coronary SMC relaxation was blunted by H2O2 catabolism. This effect was not altered by KATP channel blockade. Combination of H2O2 catabolism and A2AR antagonism attenuated Up4A-induced coronary SMC relaxation to the similar extent as A2AR antagonism alone. Collectively, Up4A-induced porcine coronary SMC relaxation is mediated by activation of A2AR-H2O2 pathway. This process does not involve A2BR, P2R or KATP channels.


Assuntos
Vasos Coronários/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Células Cultivadas , Circulação Coronária/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Microcirculação/efeitos dos fármacos , Receptor A2B de Adenosina , Suínos
6.
Immunopharmacol Immunotoxicol ; 41(3): 428-437, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062639

RESUMO

Objective: Angiotensin II (Ang II) exerts its effects through two G-protein coupled receptors: angiotensin II type 1 receptors (AT1) and type 2 receptors (AT2). Both these receptor subtypes are poorly understood in asthma. In this study, we investigated effects of AT1 receptor antagonist losartan, novel AT2 receptor agonist novokinin and AT2 receptor antagonist PD 123319 in a mouse model of asthma. Methods: Mice were divided into control (CON) and allergen sensitized (SEN) groups. SEN was sensitized with ovalbumin (OVA) on days 1 and 6 (30 µg; i.p.), followed by 5% OVA aerosol challenge (days 11-13). Treatments included (a) losartan (SEN + LOS; 20 mg/kg i.p., day 14), (b) novokinin (SEN + NOV; 0.3 mg/kg i.p., day 14), and (c) PD 123319 (SEN + PD; 5 mg/kg i.p., day 14). Experiments for airway responsiveness, bronchoalveolar lavage, and tracheal ring reactivity using isolated organ bath were performed. Results: Airway responsiveness to methacholine (MCh) (48 mg/mL) was significantly higher in SEN (563.71 ± 40% vs. 294.3 ± 123.84 in CON). This response was potentiated in SEN + PD group (757 ± 30%; p < .05 compared to SEN). SEN + LOS (247.61 ± 86.85%) and SEN + NOV (352 ± 11%) had significantly lower response compared to SEN. SEN + LOS (26.22 ± 0.29%) and SEN + NOV (46.20 ± 0.76%) treatment significantly (p < .001) attenuated total cell count and eosinophils compared to SEN group (69.38 ± 1.5%), while SEN + PD (73.04 ± 0.69%) had highest number of eosinophils. Tracheal response to MCh was significantly higher in SEN group compared to controls, and this response was significantly lowered with the losartan and novokinin treatments. Conclusions: These data suggest that AT1 and AT2 receptors have opposite effects in modulating airway hyperresponsiveness and inflammation in asthma.


Assuntos
Asma/imunologia , Receptor Tipo 1 de Angiotensina/imunologia , Receptor Tipo 2 de Angiotensina/imunologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Feminino , Imidazóis/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Losartan/farmacologia , Masculino , Camundongos , Oligopeptídeos/farmacologia , Piridinas/farmacologia
7.
Purinergic Signal ; 13(4): 591-600, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28929376

RESUMO

Uridine adenosine tetraphosphate (Up4A) exerts potent relaxation in porcine coronary arteries that is reduced following myocardial infarction, suggesting a crucial role for Up4A in the regulation of coronary flow (CF) in cardiovascular disorders. We evaluated the vasoactive effects of Up4A on CF in atherosclerosis using ApoE knockout (KO) mice ex vivo and in vivo. Functional studies were conducted in isolated mouse hearts using the Langendorff technique. Immunofluorescence was performed to assess purinergic P2X1 receptor (P2X1R) expression in isolated mouse coronary arteries. In vivo effects of Up4A on coronary blood flow (CBF) were assessed using ultrasound. Infusion of Up4A (10-9-10-5 M) into isolated mouse hearts resulted in a concentration-dependent reduction in CF in WT and ApoE KO mice to a similar extent; this effect was exacerbated in ApoE KO mice fed a high-fat diet (HFD). The P2X1R antagonist MRS2159 restored Up4A-mediated decreases in CF more so in ApoE KO + HFD than ApoE KO mice. The smooth muscle to endothelial cell ratio of coronary P2X1R expression was greater in ApoE KO + HFD than ApoE KO or WT mice, suggesting a net vasoconstrictor potential of P2X1R in ApoE KO + HFD mice. In contrast, Up4A (1.6 mg/kg) increased CBF to a similar extent among the three groups. In conclusion, Up4A decreases CF more in ApoE KO + HFD mice, likely through a net upregulation of vasoconstrictor P2X1R. In contrast, Up4A increases CBF in vivo regardless of the atherosclerotic model.


Assuntos
Aterosclerose/metabolismo , Circulação Coronária/efeitos dos fármacos , Fosfatos de Dinucleosídeos/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Animais , Preparação de Coração Isolado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Antagonistas do Receptor Purinérgico P2X/farmacologia
8.
Purinergic Signal ; 13(1): 27-49, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696085

RESUMO

Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, <5 % FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified >4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR < 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (-38); Adipoq (-17); Atgrl1/Aplnr (-14); H19 (-11) and Itga8 (-8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a 'cardio-depressant' profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia.


Assuntos
Endotoxemia/metabolismo , Miocárdio/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Endotoxemia/genética , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Janus Quinase 1/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Receptor A2A de Adenosina/genética , Fatores de Transcrição STAT/metabolismo , Transcriptoma
9.
J Mol Cell Cardiol ; 90: 30-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26654777

RESUMO

Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.


Assuntos
Circulação Coronária/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Técnicas de Cultura de Órgãos , Fenetilaminas/farmacologia , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
10.
J Pharmacol Exp Ther ; 356(3): 673-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26718241

RESUMO

Activation of adenosine receptors (ARs) has been implicated in the modulation of renal and cardiovascular systems, as well as erectile functions. Recent studies suggest that adenosine-mediated regulation of erectile function is mainly mediated through A2BAR activation. However, no studies have been conducted to determine the contribution of AR subtype in the regulation of the vascular tone of the pudendal artery (PA), the major artery supplying and controlling blood flow to the penis. Our aim was to characterize the contribution of AR subtypes and identify signaling mechanisms involved in adenosine-mediated vascular tone regulation in the PA. We used a DMT wire myograph for muscle tension measurements in isolated PAs from wild-type, A2AAR knockout, A2BAR knockout, and A2A/A2BAR double-knockout mice. Real-time reverse transcription-polymerase chain reaction was used to determine the expression of the AR subtypes. Data from our pharmacologic and genetic approaches suggest that AR activation-mediated vasodilation in the PA is mediated by both the A2AAR and A2BAR, whereas neither the A1AR nor A3AR play a role in vascular tone regulation of the PA. In addition, we showed that A2AAR- and A2BAR-mediated vasorelaxation requires activation of nitric oxide and potassium channels; however, only the A2AAR-mediated response requires protein kinase A activation. Our data are complemented by mRNA expression showing the expression of all AR subtypes with the exception of the A3AR. AR signaling in the PA may play an important role in mediating erection and represent a promising therapeutic option for the treatment of erectile dysfunction.


Assuntos
Artérias/fisiologia , Receptor A2B de Adenosina/fisiologia , Vasodilatação/fisiologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Artérias/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Períneo/irrigação sanguínea , Vasodilatação/efeitos dos fármacos
11.
Mol Cell Biochem ; 404(1-2): 87-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739357

RESUMO

This study aims to investigate the signaling mechanism involved in HS-induced modulation of adenosine-mediated vascular tone in the presence or absence of adenosine A2A receptor (A2AAR). We hypothesized that HS-induced enhanced vascular relaxation through A2AAR and epoxyeicosatrienoic acid (EETs) is dependent on peroxisome proliferator-activated receptor gamma (PPARγ) and ATP-sensitive potassium channels (KATP channels) in A2AAR(+/+) mice, while HS-induced vascular contraction to adenosine is dependent on soluble epoxide hydrolase (sEH) that degrades EETs in A2AAR(-/-) mice. Organ bath and Western blot techniques were conducted in HS (4 % NaCl) and normal salt (NS, 0.45 % NaCl)-fed A2AAR(+/+) and A2AAR(-/-) mouse aorta. We found that enhanced vasodilation to A2AAR agonist, CGS 21680, in HS-fed A2AAR(+/+) mice was blocked by PPARγ antagonist (T0070907) and KATP channel blocker (Glibenclamide). Also, sEH inhibitor (AUDA)-dependent vascular relaxation was mitigated by PPARγ antagonist. PPARγ agonist (Rosiglitazone)-induced relaxation in HS-A2AAR(+/+) mice was attenuated by KATP channel blocker. Conversely, HS-induced contraction in A2AAR(-/-) mice was attenuated by sEH inhibitor. Overall, findings from this study that implicates the contribution of EETs, PPARγ and KATP channels downstream of A2AAR to mediate enhanced vascular relaxation in response to HS diet while, role of sEH in mediating vascular contraction in HS-fed A2AAR(-/-) mice.


Assuntos
Aorta/fisiologia , Epóxido Hidrolases/metabolismo , Canais KATP/metabolismo , PPAR gama/metabolismo , Receptor A2A de Adenosina/genética , Animais , Aorta/efeitos dos fármacos , Ácidos Araquidônicos/metabolismo , Benzamidas/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Canais KATP/genética , Camundongos , PPAR gama/genética , Piridinas/administração & dosagem , Receptor A2A de Adenosina/metabolismo , Cloreto de Sódio/administração & dosagem , Vasodilatação/efeitos dos fármacos
12.
Purinergic Signal ; 11(2): 263-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911169

RESUMO

Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 µM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.


Assuntos
Vasos Coronários/efeitos dos fármacos , Miocárdio/metabolismo , NADPH Oxidases/metabolismo , Receptor A2A de Adenosina/metabolismo , Aminopiridinas/farmacologia , Animais , Coração/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2B de Adenosina/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 307(7): H1046-55, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25108010

RESUMO

We have previously demonstrated that adenosine-mediated H2O2 production and opening of ATP-sensitive K(+) (KATP) channels contributes to coronary reactive hyperemia. The present study aimed to investigate the roles of adenosine, H2O2, and KATP channels in coronary metabolic hyperemia (MH). Experiments were conducted on isolated Langendorff-perfused mouse hearts using combined pharmacological approaches with adenosine receptor (AR) knockout mice. MH was induced by electrical pacing at graded frequencies. Coronary flow increased linearly from 14.4 ± 1.2 to 20.6 ± 1.2 ml·min(-1)·g(-1) with an increase in heart rate from 400 to 650 beats/min in wild-type mice. Neither non-selective blockade of ARs by 8-(p-sulfophenyl)theophylline (8-SPT; 50 µM) nor selective A2AAR blockade by SCH-58261 (1 µM) or deletion affected MH, although resting flow and left ventricular developed pressure were reduced. Combined A2AAR and A2BAR blockade or deletion showed similar effects as 8-SPT. Inhibition of nitric oxide synthesis by N-nitro-l-arginine methyl ester (100 µM) or combined 8-SPT administration failed to reduce MH, although resting flows were reduced (by ∼20%). However, glibenclamide (KATP channel blocker, 5 µM) decreased not only resting flow (by ∼45%) and left ventricular developed pressure (by ∼36%) but also markedly reduced MH by ∼94%, resulting in cardiac contractile dysfunction. Scavenging of H2O2 by catalase (2,500 U/min) also decreased resting flow (by ∼16%) and MH (by ∼24%) but to a lesser extent than glibenclamide. Our results suggest that while adenosine modulates coronary flow under both resting and ischemic conditions, it is not required for MH. However, H2O2 and KATP channels are important local control mechanisms responsible for both coronary ischemic and metabolic vasodilation.


Assuntos
Circulação Coronária , Peróxido de Hidrogênio/metabolismo , Hiperemia/metabolismo , Canais KATP/metabolismo , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Sequestradores de Radicais Livres/farmacologia , Glibureto/farmacologia , Coração/efeitos dos fármacos , Coração/fisiologia , Hiperemia/fisiopatologia , Técnicas In Vitro , Canais KATP/antagonistas & inibidores , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miocárdio/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Pirimidinas/farmacologia , Receptores Purinérgicos P1/genética , Teofilina/análogos & derivados , Teofilina/farmacologia , Triazóis/farmacologia
14.
Am J Physiol Heart Circ Physiol ; 305(11): H1668-79, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043252

RESUMO

We previously demonstrated that A2A, but not A2B, adenosine receptors (ARs) mediate coronary reactive hyperemia (RH), possibly by producing H2O2 and, subsequently, opening ATP-dependent K(+) (KATP) channels in coronary smooth muscle cells. In this study, A1 AR knockout (KO), A3 AR KO, and A1 and A3 AR double-KO (A1/A3 DKO) mice were used to investigate the roles and mechanisms of A1 and A3 ARs in modulation of coronary RH. Coronary flow of isolated hearts was measured using the Langendorff system. A1 KO and A1/A3 DKO, but not A3 KO, mice showed a higher flow debt repayment [~30% more than wild-type (WT) mice, P < 0.05] following a 15-s occlusion. SCH-58261 (a selective A2A AR antagonist, 1 µM) eliminated the augmented RH, suggesting the involvement of enhanced A2A AR-mediated signaling in A1 KO mice. In isolated coronary arteries, immunohistochemistry showed an upregulation of A2A AR (1.6 ± 0.2 times that of WT mice, P < 0.05) and a higher magnitude of adenosine-induced H2O2 production in A1 KO mice (1.8 ± 0.3 times that of WT mice, P < 0.05), which was blocked by SCH-58261. Catalase (2,500 U/ml) and glibenclamide (a KATP channel blocker, 5 µM), but not N(G)-nitro-l-arginine methyl ester, also abolished the enhanced RH in A1 KO mice. Our data suggest that A1, but not A3, AR counteracts the A2A AR-mediated CF increase and that deletion of A1 AR results in upregulation of A2A AR and/or removal of the negative modulatory effect of A1 AR, thus leading to an enhanced A2A AR-mediated H2O2 production, KATP channel opening, and coronary vasodilation during RH. This is the first report implying that A1 AR has a role in coronary RH.


Assuntos
Circulação Coronária , Vasos Coronários/metabolismo , Peróxido de Hidrogênio/metabolismo , Hiperemia/metabolismo , Canais KATP/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Vasodilatação , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antioxidantes/farmacologia , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Feminino , Hiperemia/genética , Hiperemia/fisiopatologia , Canais KATP/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Receptor A1 de Adenosina/deficiência , Receptor A1 de Adenosina/genética , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
15.
Am J Physiol Heart Circ Physiol ; 304(10): H1294-301, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525711

RESUMO

Myocardial metabolites such as adenosine mediate reactive hyperemia, in part, by activating ATP-dependent K(+) (K(ATP)) channels in coronary smooth muscle. In this study, we investigated the role of adenosine A(2A) and A(2B) receptors and their signaling mechanisms in reactive hyperemia. We hypothesized that coronary reactive hyperemia involves A(2A) receptors, hydrogen peroxide (H(2)O(2)), and KATP channels. We used A(2A) and A(2B) knockout (KO) and A(2A/2B) double KO (DKO) mouse hearts for Langendorff experiments. Flow debt for a 15-s occlusion was repaid 128 ± 8% in hearts from wild-type (WT) mice; this was reduced in hearts from A(2A) KO and A(2A)/(2B) DKO mice (98 ± 9 and 105 ± 6%; P < 0.05), but not A(2B) KO mice (123 ± 13%). Patch-clamp experiments demonstrated that adenosine activated glibenclamide-sensitive KATP current in smooth muscle cells from WT and A(2B) KO mice (90 ± 23% of WT) but not A(2A) KO or A(2A)/A(2B) DKO mice (30 ± 4 and 35 ± 8% of WT; P < 0.05). Additionally, H(2)O(2) activated KATP current in smooth muscle cells (358 ± 99%; P < 0.05). Catalase, an enzyme that breaks down H(2)O(2), attenuated adenosine-induced coronary vasodilation, reducing the percent increase in flow from 284 ± 53 to 89 ± 13% (P < 0.05). Catalase reduced the repayment of flow debt in hearts from WT mice (84 ± 9%; P < 0.05) but had no effect on the already diminished repayment in hearts from A(2A) KO mice (98 ± 7%). Our findings suggest that adenosine A(2A) receptors are coupled to smooth muscle KATP channels in reactive hyperemia via the production of H(2)O(2) as a signaling intermediate.


Assuntos
Vasos Coronários/fisiologia , Peróxido de Hidrogênio/metabolismo , Hiperemia/fisiopatologia , Canais KATP/fisiologia , Receptor A2A de Adenosina/fisiologia , Transdução de Sinais/fisiologia , Adenosina/farmacologia , Animais , Catalase/metabolismo , Circulação Coronária/efeitos dos fármacos , Circulação Coronária/fisiologia , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , NADH NADPH Oxirredutases/metabolismo , Técnicas de Patch-Clamp , Receptor A2A de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/efeitos dos fármacos , Receptor A2B de Adenosina/fisiologia , Vasodilatadores/farmacologia
16.
Am J Physiol Regul Integr Comp Physiol ; 304(1): R23-32, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23152114

RESUMO

The interaction between adenosine and soluble epoxide hydrolase (sEH) in vascular response is not known. Therefore, we hypothesized that lack of sEH in mice enhances adenosine-induced relaxation through A(2A) adenosine receptors (AR) via CYP-epoxygenases and peroxisome proliferator-activated receptor γ (PPARγ). sEH(-/-) showed an increase in A(2A) AR, CYP2J, and PPARγ by 31%, 65%, and 36%, respectively, and a decrease in A(1)AR and PPARα (30% and 27%, respectively) vs. sEH(+/+). 5'-N-ethylcarboxamidoadenosine (NECA, an adenosine receptor agonist), CGS 21680 (A(2A) AR-agonist), and GW 7647 (PPARα-agonist)-induced responses were tested with nitro-l-arginine methyl ester (l-NAME) (NO-inhibitor; 10(-4) M), ZM-241385, SCH-58261 (A(2A) AR-antagonists; 10(-6) M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10(-5) M), 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA; 10 µM) or trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB, sEH-inhibitors; 10(-5) M), and T0070907 (PPARγ-antagonist; 10(-7) M). In sEH(-/-) mice, ACh response was not different from sEH(+/+) (P > 0.05), and l-NAME blocked ACh-responses in both sEH(-/-) and sEH(+/+) mice (P < 0.05). NECA (10(-6) M)-induced relaxation was higher in sEH(-/-) (+12.94 ± 3.2%) vs. sEH(+/+) mice (-5.35 ± 5.2%); however, it was blocked by ZM-241385 (-22.42 ± 1.9%) and SCH-58261(-30.04 ± 4.2%). CGS-21680 (10(-6) M)-induced relaxation was higher in sEH(-/-) (+37.4 ± 5.4%) vs. sEH(+/+) (+2.14 ± 2.8%). l-NAME (sEH(-/-), +30.28 ± 4.8%, P > 0.05) did not block CGS-21680-induced response, whereas 14,15-EEZE (-7.1 ± 3.7%, P < 0.05) did. Also, AUDA and t-AUCB did not change CGS-21680-induced response in sEH(-/-) (P > 0.05), but reversed in sEH(+/+) (from +2.14 ± 2.8% to +45.33 ± 4.1%, and +63.37 ± 7.2, respectively). PPARα-agonist did not relax as CGS 21680 (-2.48 ± 1.1 vs. +37.4 ± 5.4%) in sEH(-/-), and PPARγ-antagonist blocked (from +37.4 ± 5.4% to +9.40 ± 3.1) CGS 21680-induced relaxation in sEH(-/-). Our data suggest that adenosine-induced relaxation in sEH(-/-) may depend on the upregulation of A(2A) AR, CYP2J, and PPARγ, and the downregulation of A(1) AR and PPARα.


Assuntos
Epóxido Hidrolases/fisiologia , Oxigenases/fisiologia , PPAR gama/fisiologia , Receptor A2A de Adenosina/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Animais , Benzamidas/farmacologia , Benzoatos/farmacologia , Butiratos/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/genética , Feminino , Inativação Gênica , Ácidos Láuricos/farmacologia , Masculino , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Fenetilaminas/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Triazinas/farmacologia , Triazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética , Vasodilatação/fisiologia , Vasodilatadores/farmacologia
17.
J Cardiovasc Pharmacol ; 62(1): 78-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23519140

RESUMO

Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms are not thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). The 20-HETE can activate protein kinase C-α (PKC-α), which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist 2-chloro-N cyclopentyladenosine (CCPA) was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished 2-chloro-N cyclopentyladenosine-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway.


Assuntos
Citocromo P-450 CYP4A/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Proteína Quinase C-alfa/fisiologia , Receptor A1 de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Western Blotting , Carbazóis/farmacologia , Citocromo P-450 CYP4A/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Feminino , Flavonoides/farmacologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Contração Isométrica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A1 de Adenosina/efeitos dos fármacos
18.
J Cardiovasc Pharmacol ; 61(1): 70-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23288107

RESUMO

Concentration-response curves (CRCs) of adenosine receptor (AR) agonists, NECA (nonspecific), CCPA (A1 specific), CGS-216870 (A2A specific), BAY 60-6583 (A2B specific), and Cl-IB-MECA (A3 specific) for mesenteric arteries (MAs) from 4 AR knockout (KO) mice (A1, A2A, A2B, and A3) and their wild type (WT) were constructed. The messenger RNA expression of MAs from KO mice and WT were also studied. Adenosine (10 to 10 M) and NECA (10 to 10 M) induced relaxation in all mice except A2B KO mice, which only showed constriction by adenosine at 10 to 10 and NECA at 10 to 10 M. The CCPA induced a significant constriction at 10 and 10 M in all mice, except A1KO. BAY 60-6583 induced relaxation (10 to 10 M) in WT and no response in A2BKO except at 10 M. The CRCs for BAY 60-6583 in A1, A2A, and A3 KO mice shifted to the left when compared with WT mice, suggesting an upregulation of A2B AR. No responses were noted to CGS-21680 in all mice. Cl-IB-MECA only induced relaxation at concentration greater than 10 M, and no differences were found between different KO mice. The CRC for Bay 60-6583 was not significantly changed in the presence of 10 M of L-NAME, 10 M of indomethacin, or both. Our data suggest that A2B AR is the predominant AR subtype and the effect may be endothelial independent, whereas A1 AR plays a significant modulatory role in mouse MAs.


Assuntos
Artérias Mesentéricas/metabolismo , Receptores Purinérgicos P1/metabolismo , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas do Receptor Purinérgico P1/farmacologia , RNA Mensageiro/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/deficiência , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/genética , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
19.
Am J Physiol Regul Integr Comp Physiol ; 302(4): R400-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22160543

RESUMO

Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), Gö-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and Gö-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was significantly higher in WT. CCPA (10(-6) M) increased the protein expression of PKC-α and phosphorylated-ERK1/2, while HET0016 significantly reduced the CCPA-induced increase in expression of these proteins. These data suggest that, in the absence of A(2A)AR, Cyp4a induces vasoconstriction through MAPK via upregulation of A(1)AR and PKC-α.


Assuntos
Adenosina/farmacologia , Aorta/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Receptor A1 de Adenosina/fisiologia , Receptor A2A de Adenosina/fisiologia , Vasodilatadores/farmacologia , Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Aorta/fisiologia , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP4A/genética , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteína Quinase C/metabolismo , Proteína Quinase C/fisiologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Regulação para Cima
20.
Am J Physiol Heart Circ Physiol ; 301(6): H2322-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21949117

RESUMO

Adenosine plays a role in physiological and pathological conditions, and A(2) adenosine receptor (AR) expression is modified in many cardiovascular disorders. In this study, we elucidated the role of the A(2B)AR and its relationship to the A(2A)AR in coronary flow (CF) changes using A(2B) single-knockout (KO) and A(2A/2B) double-KO (DKO) mice in a Langendorff setup. We used two approaches: 1) selective and nonselective AR agonists and antagonists and 2) A(2A)KO and A(2B)KO and A(2A/2B)DKO mice. BAY 60-6583 (a selective A(2B) agonist) had no effect on CF in A(2B)KO mice, whereas it significantly increased CF in wild-type (WT) mice (maximum of 23.3 ± 9 ml·min(-1)·g(-1)). 5'-N-ethylcarboxamido adenosine (NECA; a nonselective AR agonist) increased CF in A(2B)KO mice (maximum of 34.6 ± 4.7 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Also, CGS-21680 (a selective A(2A) agonist) increased CF in A(2B)KO mice (maximum of 29 ± 1.9 ml·min(-1)·g(-1)) to a significantly higher degree compared with WT mice (maximum of 25.1 ± 2.3 ml·min(-1)·g(-1)). SCH-58261 (an A(2A)-selective antagonist) inhibited the NECA-induced increase in CF to a significantly higher degree in A(2B)KO mice (19.3 ± 1.6 vs. 0.5 ± 0.4 ml·min(-1)·g(-1)) compared with WT mice (19 ± 3.5 vs. 3.6 ± 0.5 ml·min(-1)·g(-1)). NECA did not induce any increase in CF in A(2A/2B)DKO mice, whereas a significant increase was observed in WT mice (maximum of 23.1 ± 2.1 ml·min(-1)·g(-1)). Furthermore, the mitochondrial ATP-sensitive K(+) (K(ATP)) channel blocker 5-hydroxydecanoate had no effect on the NECA-induced increase in CF in WT mice, whereas the NECA-induced increase in CF in WT (17.6 ± 2 ml·min(-1)·g(-1)), A(2A)KO (12.5 ± 2.3 ml·min(-1)·g(-1)), and A(2B)KO (16.2 ± 0.8 ml·min(-1)·g(-1)) mice was significantly blunted by the K(ATP) channel blocker glibenclamide (to 0.7 ± 0.7, 2.3 ± 1.1, and 0.9 ± 0.4 ml·min(-1)·g(-1), respectively). Also, the CGS-21680-induced (22 ± 2.3 ml·min(-1)·g(-1)) and BAY 60-6583-induced (16.4 ± 1.60 ml·min(-1)·g(-1)) increase in CF in WT mice was significantly blunted by glibenclamide (to 1.2 ± 0.4 and 1.8 ± 1.2 ml·min(-1)·g(-1), respectively). In conclusion, this is the first evidence supporting the compensatory upregulation of A(2A)ARs in A(2B)KO mice and demonstrates that both A(2A)ARs and A(2B)ARs induce CF changes through K(ATP) channels. These results identify AR-mediated CF responses that may lead to better therapeutic approaches for the treatment of cardiovascular disorders.


Assuntos
Circulação Coronária , Vasos Coronários/metabolismo , Canais KATP/metabolismo , Receptor A2A de Adenosina/deficiência , Receptor A2B de Adenosina/deficiência , Vasodilatação , Animais , Arteríolas/metabolismo , Velocidade do Fluxo Sanguíneo , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frequência Cardíaca , Canais KATP/antagonistas & inibidores , Mesentério/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A2A de Adenosina/genética , Receptor A2B de Adenosina/genética , Vasodilatação/efeitos dos fármacos , Função Ventricular Esquerda , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa