Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 12(1): 2962, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194075

RESUMO

Non-tuberculous mycobacterial (NTM) infection is an emerging infectious entity that often presents as lymphadenitis in the pediatric age group. Current practice involves invasive testing and excisional biopsy to diagnose NTM lymphadenitis. In this study, we performed a retrospective analysis of 249 lymph nodes selected from 143 CT scans of pediatric patients presenting with lymphadenopathy at the Montreal Children's Hospital between 2005 and 2018. A Random Forest classifier was trained on the ten most discriminative features from a set of 1231 radiomic features. The model classifying nodes as pyogenic, NTM, reactive, or proliferative lymphadenopathy achieved an accuracy of 72%, a precision of 68%, and a recall of 70%. Between NTM and all other causes of lymphadenopathy, the model achieved an area under the curve (AUC) of 89%. Between NTM and pyogenic lymphadenitis, the model achieved an AUC of 90%. Between NTM and the reactive and proliferative lymphadenopathy groups, the model achieved an AUC of 93%. These results indicate that radiomics can achieve a high accuracy for classification of NTM lymphadenitis. Such a non-invasive highly accurate diagnostic approach has the potential to reduce the need for invasive procedures in the pediatric population.


Assuntos
Modelos Biológicos , Tomografia Computadorizada por Raios X , Tuberculose dos Linfonodos/classificação , Tuberculose dos Linfonodos/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos
2.
Ann Otol Rhinol Laryngol ; 131(7): 697-703, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34416844

RESUMO

OBJECTIVE: Major postoperative adverse events (MPAEs) following head and neck surgery are not infrequent and lead to significant morbidity. The objective of this study was to ascertain which factors are most predictive of MPAEs in patients undergoing head and neck surgery. METHODS: A cohort study was carried out based on data from patients registered in the National Surgical Quality Improvement Program (NSQIP) from 2006 to 2018. All patients undergoing non-ambulatory head and neck surgery based on Current Procedural Terminology codes were included. Perioperative factors were evaluated to predict MPAEs within 30-days of surgery. Age was classified as both a continuous and categorical variable. Retained factors were classified by attributable fraction and C-statistic. Multivariate regression and supervised machine learning models were used to quantify the contribution of age as a predictor of MPAEs. RESULTS: A total of 43 701 operations were analyzed with 5106 (11.7%) MPAEs. The results of supervised machine learning indicated that prolonged surgeries, anemia, free tissue transfer, weight loss, wound classification, hypoalbuminemia, wound infection, tracheotomy (concurrent with index head and neck surgery), American Society of Anesthesia (ASA) class, and sex as most predictive of MPAEs. On multivariate regression, ASA class (21.3%), hypertension on medication (15.8%), prolonged operative time (15.3%), sex (13.1%), preoperative anemia (12.8%), and free tissue transfer (9%) had the largest attributable fractions associated with MPAEs. Age was independently associated with MPAEs with an attributable fraction ranging from 0.6% to 4.3% with poor predictive ability (C-statistic 0.60). CONCLUSION: Surgical, comorbid, and frailty-related factors were most predictive of short-term MPAEs following head and neck surgery. Age alone contributed a small attributable fraction and poor prediction of MPAEs. LEVEL OF EVIDENCE: 3.


Assuntos
Neoplasias de Cabeça e Pescoço , Complicações Pós-Operatórias , Estudos de Coortes , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Duração da Cirurgia , Complicações Pós-Operatórias/epidemiologia , Período Pós-Operatório , Melhoria de Qualidade , Estudos Retrospectivos , Fatores de Risco , Estados Unidos
3.
Transl Oncol ; 14(10): 101188, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34343854

RESUMO

Biomarkers which can identify Diffuse Large B-Cell Lymphoma (DLBCL) likely to be refractory to first-line therapy are essential for selecting this population prior to therapy initiation to offer alternate therapeutic options that can improve prognosis. We tested the ability of a CT-based radiomics approach with machine learning to predict Primary Treatment Failure (PTF)-DLBCL from initial imaging evaluation. Twenty-six refractory patients were matched to 26 non-refractory patients, yielding 180 lymph nodes for analysis. Manual 3D delineation of the total node volume was performed by two independent readers to test the reproducibility. Then, 1218 hand-crafted radiomic features were extracted. The Random Forests machine learning approach was used as a classifier for constructing the prediction models. Seventy percent of the nodes were randomly assigned to a training set and the remaining 30% were assigned to an independent test set. The final model was tested on the dataset from the 2 readers, showing a mean accuracy, sensitivity and specificity of 73%, 62% and 82%, respectively, for distinguishing between refractory and non-refractory patients. The area under the receiver operating characteristic curve (AUC) was 0.83 and 0.79 for the two readers. We conclude that machine learning CT-based radiomics analysis is able to identify a priori PTF-DLBCL with a good accuracy.

4.
Cancers (Basel) ; 13(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34359623

RESUMO

Current radiomic studies of head and neck squamous cell carcinomas (HNSCC) are typically based on datasets combining tumors from different locations, assuming that the radiomic features are similar based on histopathologic characteristics. However, molecular pathogenesis and treatment in HNSCC substantially vary across different tumor sites. It is not known if a statistical difference exists between radiomic features from different tumor sites and how they affect machine learning model performance in endpoint prediction. To answer these questions, we extracted radiomic features from contrast-enhanced neck computed tomography scans (CTs) of 605 patients with HNSCC originating from the oral cavity, oropharynx, and hypopharynx/larynx. The difference in radiomic features of tumors from these sites was assessed using statistical analyses and Random Forest classifiers on the radiomic features with 10-fold cross-validation to predict tumor sites, nodal metastasis, and HPV status. We found statistically significant differences (p-value ≤ 0.05) between the radiomic features of HNSCC depending on tumor location. We also observed that differences in quantitative features among HNSCC from different locations impact the performance of machine learning models. This suggests that radiomic features may reveal biologic heterogeneity complementary to current gold standard histopathologic evaluation. We recommend considering tumor site in radiomic studies of HNSCC.

5.
Neuroimaging Clin N Am ; 30(4): 433-445, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33038994

RESUMO

The deployment of machine learning (ML) models in the health care domain can increase the speed and accuracy of diagnosis and improve treatment planning and patient care. Translating academic research to applications that are deployable in clinical settings requires the ability to generalize and high reproducibility, which are contingent on a rigorous and sound methodology for the development and evaluation of ML models. This article describes the fundamental concepts and processes for ML model evaluation and highlights common workflows. It concludes with a discussion of the requirements for the deployment of ML models in clinical settings.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Neuroimagem , Humanos , Reprodutibilidade dos Testes
6.
Neuroimaging Clin N Am ; 30(4): 393-399, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33038991

RESUMO

This article reviews the history of artificial intelligence and introduces the reader to major events that prompted interest in the field, as well as pitfalls and challenges that have slowed its development. The purpose of this article is to provide a high-level historical perspective on the development of the field over the past decades, highlighting the potential of the field for transforming health care, but also the importance of setting realistic expectations for artificial intelligence applications to avoid repeating historical cyclical trends and a third "artificial intelligence winter."


Assuntos
Inteligência Artificial , Neuroimagem/métodos , Humanos
7.
Neuroimaging Clin N Am ; 30(3): 311-323, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32600633

RESUMO

Multiple applications of dual energy computed tomography (DECT) have been described for the evaluation of disorders in the head and neck, especially in oncology. We review the body of evidence suggesting advantages of DECT for the evaluation of the neck compared with conventional single energy computed tomography scans, but the full potential of DECT is still to be realized. There is early evidence suggesting significant advantages of DECT for the extraction of quantitative biomarkers using radiomics and machine learning, representing a new horizon that may enable this technology to reach its full potential.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos
9.
Comput Struct Biotechnol J ; 17: 1009-1015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31406557

RESUMO

PURPOSE: To determine whether machine learning assisted-texture analysis of multi-energy virtual monochromatic image (VMI) datasets from dual-energy CT (DECT) can be used to differentiate metastatic head and neck squamous cell carcinoma (HNSCC) lymph nodes from lymphoma, inflammatory, or normal lymph nodes. MATERIALS AND METHODS: A retrospective evaluation of 412 cervical nodes from 5 different patient groups (50 patients in total) having undergone DECT of the neck between 2013 and 2015 was performed: (1) HNSCC with pathology proven metastatic adenopathy, (2) HNSCC with pathology proven benign nodes (controls for (1)), (3) lymphoma, (4) inflammatory, and (5) normal nodes (controls for (3) and (4)). Texture analysis was performed with TexRAD® software using two independent sets of contours to assess the impact of inter-rater variation. Two machine learning algorithms (Random Forests (RF) and Gradient Boosting Machine (GBM)) were used with independent training and testing sets and determination of accuracy, sensitivity, specificity, PPV, NPV, and AUC. RESULTS: In the independent testing (prediction) sets, the accuracy for distinguishing different groups of pathologic nodes or normal nodes ranged between 80 and 95%. The models generated using texture data extracted from the independent contour sets had substantial to almost perfect agreement. The accuracy, sensitivity, specificity, PPV, and NPV for correctly classifying a lymph node as malignant (i.e. metastatic HNSCC or lymphoma) versus benign were 92%, 91%, 93%, 95%, 87%, respectively. CONCLUSION: Machine learning assisted-DECT texture analysis can help distinguish different nodal pathology and normal nodes with a high accuracy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa