Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784445

RESUMO

Multiple mRNA isoforms of the same gene are produced via alternative splicing, a biological mechanism that regulates protein diversity while maintaining genome size. Alternatively spliced mRNA isoforms of the same gene may sometimes have very similar sequence, but they can have significantly diverse effects on cellular function and regulation. The products of alternative splicing have important and diverse functional roles, such as response to environmental stress, regulation of gene expression, human heritable, and plant diseases. The mRNA isoforms of the same gene can have dramatically different functions. Despite the functional importance of mRNA isoforms, very little has been done to annotate their functions. The recent years have however seen the development of several computational methods aimed at predicting mRNA isoform level biological functions. These methods use a wide array of proteo-genomic data to develop machine learning-based mRNA isoform function prediction tools. In this review, we discuss the computational methods developed for predicting the biological function at the individual mRNA isoform level.


Assuntos
Biologia Computacional/métodos , Isoformas de RNA/metabolismo , Processamento Alternativo/genética , Animais , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Isoformas de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
IUBMB Life ; 70(12): 1289-1301, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419142

RESUMO

Mitochondria require ~1,500 proteins for their maintenance and proper functionality, which constitute the mitochondrial proteome (mt-proteome). Although a few of these proteins, mostly subunits of the electron transport chain complexes, are encoded in mitochondrial DNA (mtDNA), the vast majority are encoded in the nuclear genome and imported to the organelle. Previous studies have shown a continuous and complex evolution of mt-proteome among eukaryotes. However, there was less attention paid to mt-proteome evolution within Metazoa, presumably because animal mtDNA and, by extension, animal mitochondria are often considered to be uniform. In this analysis, two bioinformatic approaches (Orthologue-detection and Mitochondrial Targeting Sequence prediction) were used to identify mt-proteins in 23 species from four nonbilaterian phyla: Cnidaria, Ctenophora, Placozoa, and Porifera, as well as two choanoflagellates, the closest animal relatives. Our results revealed a large variation in mt-proteome in nonbilaterian animals in size and composition. Myxozoans, highly reduced cnidarian parasites, possessed the smallest inferred mitochondrial proteomes, while calcareous sponges possessed the largest. About 513 mitochondrial orthologous groups were present in all nonbilaterian phyla and human. Interestingly, 42 human mitochondrial proteins were not identified in any nonbilaterian species studied and represent putative innovations along the bilaterian branch. Several of these proteins were involved in apoptosis and innate immunity, two processes known to evolve within Metazoa. Conversely, several proteins identified as mitochondrial in nonbilaterian phyla and animal outgroups were absent in human, representing cases of possible loss. Finally, a few human cytosolic proteins, such as histones and cytosolic ribosomal proteins, were predicted to be targeted to mitochondria in nonbilaterian animals. Overall, our analysis provides the first step in characterization of mt-proteomes in nonbilaterian animals and understanding evolution of animal mt-proteome. © 2018 IUBMB Life, 70(12):1289-1301, 2018.


Assuntos
Ctenóforos/genética , Evolução Molecular , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Animais , Núcleo Celular/genética , Biologia Computacional , DNA Mitocondrial , Humanos , Filogenia , Proteoma/genética
3.
Methods Mol Biol ; 2757: 239-257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668970

RESUMO

Mitochondrial proteomes have been experimentally characterized for only a handful of animal species. However, the increasing availability of genomic and transcriptomic data allows one to infer mitochondrial proteins using computational tools. MitoPredictor is a novel random forest classifier, which utilizes orthology search, mitochondrial targeting signal (MTS) identification, and protein domain content to infer mitochondrial proteins in animals. MitoPredictor's output also includes an easy-to-use R Shiny applet for the visualization and analysis of the results. In this article, we provide a guide for predicting and analyzing the mitochondrial proteome of the ctenophore Mnemiopsis leidyi using MitoPredictor.


Assuntos
Ctenóforos , Proteínas Mitocondriais , Proteoma , Animais , Ctenóforos/metabolismo , Ctenóforos/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Biologia Computacional/métodos , Mitocôndrias/metabolismo , Proteômica/métodos , Software
4.
bioRxiv ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39071318

RESUMO

The MutS gene family is distributed across the tree of life and is involved in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded the set of MutS genes in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes. Land plants, green algae, red algae, and glaucophytes share cyanobacterial-like MutS1 and MutS2 genes that presumably were gained via plastid endosymbiotic gene transfer. MutS1 was subsequently lost in some taxa, including seed plants, whereas MutS2 was duplicated in Viridiplantae (i.e., land plants and green algae) with widespread retention of both resulting paralogs. Viridiplantae also have two anciently duplicated copies of the eukaryotic MSH6 gene (i.e., MSH6 and MSH7) and acquired MSH1 via horizontal gene transfer - potentially from a nucleocytovirus. Despite sharing the same name, "plant MSH1" is not directly related to the gene known as MSH1 in some fungi and animals, which may be an ancestral eukaryotic gene acquired via mitochondrial endosymbiosis and subsequently lost in most eukaryotic lineages. There has been substantial progress in understanding the functions of MSH1 and MSH6/MSH7 in plants, but the roles of the cyanobacterial-like MutS1 and MutS2 genes remain uncharacterized. Known functions of bacterial homologs and predicted protein structures, including fusions to diverse nuclease domains, provide hypotheses about potential molecular mechanisms. Because most plant-specific MutS proteins are targeted to the mitochondria and/or plastids, the expansion of this family appears to have played a large role in shaping plant organelle genetics.

5.
PeerJ ; 11: e16339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953771

RESUMO

Pathogens have evolved sophisticated strategies to manipulate host signaling pathways, including the phenomenon of molecular mimicry, where pathogen-derived biomolecules imitate host biomolecules. In this study, we resurrected, updated, and optimized a sequence-based bioinformatics pipeline to identify potential molecular mimicry candidates between humans and 32 pathogenic species whose proteomes' 3D structure predictions were available at the start of this study. We observed considerable variation in the number of mimicry candidates across pathogenic species, with pathogenic bacteria exhibiting fewer candidates compared to fungi and protozoans. Further analysis revealed that the candidate mimicry regions were enriched in solvent-accessible regions, highlighting their potential functional relevance. We identified a total of 1,878 mimicked regions in 1,439 human proteins, and clustering analysis indicated diverse target proteins across pathogen species. The human proteins containing mimicked regions revealed significant associations between these proteins and various biological processes, with an emphasis on host extracellular matrix organization and cytoskeletal processes. However, immune-related proteins were underrepresented as targets of mimicry. Our findings provide insights into the broad range of host-pathogen interactions mediated by molecular mimicry and highlight potential targets for further investigation. This comprehensive analysis contributes to our understanding of the complex mechanisms employed by pathogens to subvert host defenses and we provide a resource to assist researchers in the development of novel therapeutic strategies.


Assuntos
Interações Hospedeiro-Patógeno , Mimetismo Molecular , Humanos , Interações Hospedeiro-Patógeno/genética , Bactérias/metabolismo , Proteoma/química , Biologia Computacional
6.
DNA Repair (Amst) ; 110: 103273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066390

RESUMO

All studied octocoral mitochondrial genomes (mt-genomes) contain a homologue of the Escherichia coli mutS gene, a member of a gene family encoding proteins involved in DNA mismatch repair, other types of DNA repair, meiotic recombination, and other functions. Although mutS homologues are found in all domains of life, as well as viruses, octocoral mt-mutS is the only such gene found in an organellar genome. While the function of mtMutS is not known, its domain architecture, conserved sequence, and presence of several characteristic residues suggest its involvement in mitochondrial DNA repair. This inference is supported by exceptionally low rates of mt-sequence evolution observed in octocorals. Previous studies of mt-mutS have been limited by the small number of octocoral mt-genomes available. We utilized sequence-capture data from the recent Quattrini et al. 2020 study [Nature Ecology & Evolution 4:1531-1538] to assemble complete mt-genomes for 94 species of octocorals. Combined with sequences publicly available in GenBank, this resulted in a dataset of 184 complete mt-genomes, which we used to re-analyze the conservation and evolution of mt-mutS. In our analysis, we discovered the first case of mt-mutS loss among octocorals in one of the two Pseudoanthomastus spp. assembled from Quattrini et al. data. This species displayed accelerated rate and changed patterns of nucleotide substitutions in mt-genome, which we argue provide additional evidence for the role of mtMutS in DNA repair. In addition, we found accelerated mt-sequence evolution in the presence of mt-mutS in several octocoral lineages. This accelerated evolution did not appear to be the result of relaxed selection pressure and did not entail changes in patterns of nucleotide substitutions. Overall, our results support previously reported patterns of conservation in mt-mutS and suggest that mtMutS is involved in DNA repair in octocoral mitochondria. They also indicate that the presence of mt-mutS contributes to, but does not fully explain, the low rates of sequence evolution in octocorals.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas de Escherichia coli , Evolução Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Nucleotídeos , Filogenia
7.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402879

RESUMO

MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.


Assuntos
Proteínas de Saccharomyces cerevisiae , Animais , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Mitochondrion ; 52: 100-107, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109602

RESUMO

Despite a conserved set of core mitochondrial functions, animal mitochondrial proteomes show a large variation in size. We analyzed putative mechanisms behind and functional significance of this variation by performing comparative analysis of the experimentally-verified mitochondrial proteomes of four bilaterian animals (human, mouse, Caenorhabditis elegans, and Drosophila melanogaster) and two non-animal outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae). We found that of several factors affecting mitochondrial proteome size, evolution of novel mitochondrial proteins in mammals and loss of ancestral proteins in protostomes were the main contributors. Interestingly, the gain and loss of the N-terminal mitochondrial targeting signal was not a major factor in the proteome size evolution.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica/métodos , Acanthamoeba castellanii/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Evolução Molecular , Tamanho do Genoma , Humanos , Camundongos , Saccharomyces cerevisiae/metabolismo
9.
Mitochondrion ; 51: 118-125, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31972373

RESUMO

Data on experimentally-characterized animal mitochondrial proteomes (mt-proteomes) are limited to a few model organisms and are scattered across multiple databases, impeding a comparative analysis. We developed two resources to address these problems. First, we re-analyzed proteomic data from six species with experimentally characterized mt-proteomes: animals (Homo sapiens, Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster), and outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae) and created the Metazoan Mitochondrial Proteome Database (MMPdb) to host the results. Second, we developed a novel pipeline, "MitoPredictor" that uses a Random Forest classifier to infer mitochondrial localization of proteins based on orthology, mitochondrial targeting signal prediction, and protein domain analyses. Both tools generate an R Shiny applet that can be used to visualize and interact with the results and can be used on a personal computer. MMPdb is also available online at https://mmpdb.eeob.iastate.edu/.


Assuntos
Bases de Dados de Proteínas , Aprendizado de Máquina , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acanthamoeba castellanii , Animais , Caenorhabditis elegans , Drosophila melanogaster , Metabolismo Energético/fisiologia , Humanos , Camundongos , Proteoma/genética , Saccharomyces cerevisiae
10.
PLoS One ; 7(11): e50560, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185637

RESUMO

Legionella pneumophila, the agent of Legionnaires' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms. Therefore, we examined the ability of L. pneumophila (clinical isolate 130 b) to persist within biofilms formed by various types of aquatic bacteria, using a bioreactor with flow, steel surfaces, and low-nutrient conditions. L. pneumophila was able to intercalate into and persist within a biofilm formed by Klebsiella pneumoniae, Flavobacterium sp. or Pseudomonas fluorescens. The levels of L. pneumophila within these biofilms were as much as 4 × 10(4) CFU per cm(2) of steel coupon and lasted for at least 12 days. These data document that K. pneumoniae, Flavobacterium sp., and P. fluorescens can promote the presence of L. pneumophila in dynamic biofilms. In contrast to these results, L. pneumophila 130 b did not persist within a biofilm formed by Pseudomonas aeruginosa, confirming that some bacteria are permissive for Legionella colonization whereas others are antagonistic. In addition to colonizing certain mono-species biofilms, L. pneumophila 130 b persisted within a two-species biofilm formed by K. pneumoniae and Flavobacterium sp. Interestingly, the legionellae were also able to colonize a two-species biofilm formed by K. pneumoniae and P. aeruginosa, demonstrating that a species that is permissive for L. pneumophila can override the inhibitory effect(s) of a non-permissive species.


Assuntos
Biofilmes/crescimento & desenvolvimento , Flavobacterium/crescimento & desenvolvimento , Klebsiella pneumoniae/crescimento & desenvolvimento , Legionella pneumophila/crescimento & desenvolvimento , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas fluorescens/crescimento & desenvolvimento , Simbiose , Antibiose , Reatores Biológicos , Contagem de Colônia Microbiana , Meios de Cultura , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa