Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Biol ; 22(1): 225, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379982

RESUMO

BACKGROUND: Homologous recombination deficiency (HRD) is recognized as a pan-cancer predictive biomarker that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical significance, HRD testing is highly complex. Here, we investigated in a proof-of-concept study whether Deep Learning (DL) can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different cancer types. METHODS: We developed a deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combining loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) from whole genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model's effectiveness was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy in predicting genomic HRD against a clinically recognized cutoff value. RESULTS: Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung cancers reaching cross-validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer-trained image-based HRD classifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, prostate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD-like phenotype occurs across these tumor entities. CONCLUSIONS: This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating its applicability across nine different tumor types.


Assuntos
Aprendizado Profundo , Recombinação Homóloga , Neoplasias , Humanos , Neoplasias/genética , Perda de Heterozigosidade
2.
PLoS Comput Biol ; 18(2): e1009822, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35120124

RESUMO

Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients with three or more measurements per target lesion, of which 652 patients had six or more data points. We show that the early treatment response shows only moderate correlation with the final treatment response, demonstrating the need for nuanced models. We then perform a head-to-head comparison of six classical models which are widely used in the field: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several models provide a good fit to tumor volume measurements, with the Gompertz model providing the best balance between goodness of fit and number of parameters. Similarly, when fitting to early treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to forecasted data, indicating that these models could potentially be effective at predicting treatment outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-of-the art models of human tumor growth. We publicly release an anonymized version of our original data, providing the first benchmark set of human tumor growth data for evaluation of mathematical models.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Imunoterapia , Modelos Teóricos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Carga Tumoral
3.
Gastric Cancer ; 26(5): 708-720, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269416

RESUMO

INTRODUCTION: The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. OBJECTIVE: We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. METHODS: We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. RESULTS: Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). CONCLUSION: Our study shows that gastric adenocarcinoma subtyping using pathologist's Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.


Assuntos
Adenocarcinoma , Aprendizado Profundo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Estudos Retrospectivos , Prognóstico , Modelos de Riscos Proporcionais , Adenocarcinoma/patologia
4.
Gastric Cancer ; 26(2): 264-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264524

RESUMO

BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS: On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS: Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Instabilidade de Microssatélites , Biomarcadores Tumorais/genética
5.
Comput Biol Med ; 175: 108410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678938

RESUMO

Latent diffusion models (LDMs) have emerged as a state-of-the-art image generation method, outperforming previous Generative Adversarial Networks (GANs) in terms of training stability and image quality. In computational pathology, generative models are valuable for data sharing and data augmentation. However, the impact of LDM-generated images on histopathology tasks compared to traditional GANs has not been systematically studied. We trained three LDMs and a styleGAN2 model on histology tiles from nine colorectal cancer (CRC) tissue classes. The LDMs include 1) a fine-tuned version of stable diffusion v1.4, 2) a Kullback-Leibler (KL)-autoencoder (KLF8-DM), and 3) a vector quantized (VQ)-autoencoder deploying LDM (VQF8-DM). We assessed image quality through expert ratings, dimensional reduction methods, distribution similarity measures, and their impact on training a multiclass tissue classifier. Additionally, we investigated image memorization in the KLF8-DM and styleGAN2 models. All models provided a high image quality, with the KLF8-DM achieving the best Frechet Inception Distance (FID) and expert rating scores for complex tissue classes. For simpler classes, the VQF8-DM and styleGAN2 models performed better. Image memorization was negligible for both styleGAN2 and KLF8-DM models. Classifiers trained on a mix of KLF8-DM generated and real images achieved a 4% improvement in overall classification accuracy, highlighting the usefulness of these images for dataset augmentation. Our systematic study of generative methods showed that KLF8-DM produces the highest quality images with negligible image memorization. The higher classifier performance in the generatively augmented dataset suggests that this augmentation technique can be employed to enhance histopathology classifiers for various tasks.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
6.
Lancet Digit Health ; 6(1): e33-e43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123254

RESUMO

BACKGROUND: Precise prognosis prediction in patients with colorectal cancer (ie, forecasting survival) is pivotal for individualised treatment and care. Histopathological tissue slides of colorectal cancer specimens contain rich prognostically relevant information. However, existing studies do not have multicentre external validation with real-world sample processing protocols, and algorithms are not yet widely used in clinical routine. METHODS: In this retrospective, multicentre study, we collected tissue samples from four groups of patients with resected colorectal cancer from Australia, Germany, and the USA. We developed and externally validated a deep learning-based prognostic-stratification system for automatic prediction of overall and cancer-specific survival in patients with resected colorectal cancer. We used the model-predicted risk scores to stratify patients into different risk groups and compared survival outcomes between these groups. Additionally, we evaluated the prognostic value of these risk groups after adjusting for established prognostic variables. FINDINGS: We trained and validated our model on a total of 4428 patients. We found that patients could be divided into high-risk and low-risk groups on the basis of the deep learning-based risk score. On the internal test set, the group with a high-risk score had a worse prognosis than the group with a low-risk score, as reflected by a hazard ratio (HR) of 4·50 (95% CI 3·33-6·09) for overall survival and 8·35 (5·06-13·78) for disease-specific survival (DSS). We found consistent performance across three large external test sets. In a test set of 1395 patients, the high-risk group had a lower DSS than the low-risk group, with an HR of 3·08 (2·44-3·89). In two additional test sets, the HRs for DSS were 2·23 (1·23-4·04) and 3·07 (1·78-5·3). We showed that the prognostic value of the deep learning-based risk score is independent of established clinical risk factors. INTERPRETATION: Our findings indicate that attention-based self-supervised deep learning can robustly offer a prognosis on clinical outcomes in patients with colorectal cancer, generalising across different populations and serving as a potentially new prognostic tool in clinical decision making for colorectal cancer management. We release all source codes and trained models under an open-source licence, allowing other researchers to reuse and build upon our work. FUNDING: The German Federal Ministry of Health, the Max-Eder-Programme of German Cancer Aid, the German Federal Ministry of Education and Research, the German Academic Exchange Service, and the EU.


Assuntos
Neoplasias Colorretais , Aprendizado Profundo , Humanos , Estudos Retrospectivos , Prognóstico , Fatores de Risco , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia
7.
Commun Med (Lond) ; 3(1): 141, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816837

RESUMO

Large language models (LLMs) are artificial intelligence (AI) tools specifically trained to process and generate text. LLMs attracted substantial public attention after OpenAI's ChatGPT was made publicly available in November 2022. LLMs can often answer questions, summarize, paraphrase and translate text on a level that is nearly indistinguishable from human capabilities. The possibility to actively interact with models like ChatGPT makes LLMs attractive tools in various fields, including medicine. While these models have the potential to democratize medical knowledge and facilitate access to healthcare, they could equally distribute misinformation and exacerbate scientific misconduct due to a lack of accountability and transparency. In this article, we provide a systematic and comprehensive overview of the potentials and limitations of LLMs in clinical practice, medical research and medical education.

8.
medRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945540

RESUMO

Background: Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on routine Hematoxylin & Eosin (H&E) histology images in ten cancer types. Methods: We developed a fully automated deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. A combined genomic scar HRD score, which integrated loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) was calculated from whole genome sequencing data for n=4,565 patients from two independent cohorts. The primary statistical endpoint was the Area Under the Receiver Operating Characteristic curve (AUROC) for the prediction of genomic scar HRD with a clinically used cutoff value. Results: We found that HRD status is predictable in tumors of the endometrium, pancreas and lung, reaching cross-validated AUROCs of 0.79, 0.58 and 0.66. Predictions generalized well to an external cohort with AUROCs of 0.93, 0.81 and 0.73 respectively. Additionally, an HRD classifier trained on breast cancer yielded an AUROC of 0.78 in internal validation and was able to predict HRD in endometrial, prostate and pancreatic cancer with AUROCs of 0.87, 0.84 and 0.67 indicating a shared HRD-like phenotype is across tumor entities. Conclusion: In this study, we show that HRD is directly predictable from H&E slides using attMIL within and across ten different tumor types.

9.
Neurooncol Adv ; 5(1): vdad139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106649

RESUMO

Background: Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. Methods: We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N = 2845 patients. Results: We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q codeletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90, and 0.80 in the training cohort, respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79, and 0.87 for prediction of IDH, ATRX, and 1p19q codeletion, respectively. Conclusions: In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available.

10.
Med Image Anal ; 79: 102474, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588568

RESUMO

Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but markedly different approaches perform relative to each other. We implemented and systematically compared six methods in six clinically relevant end-to-end prediction tasks using data from N=2980 patients for training with rigorous external validation. We tested three classical weakly-supervised approaches with convolutional neural networks and vision transformers (ViT) and three MIL-based approaches with and without an additional attention module. Our results empirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we report significant performance differences for clinically relevant tasks of mutation prediction in colorectal, gastric, and bladder cancer. In these mutation prediction tasks, classical weakly-supervised workflows outperformed MIL-based weakly-supervised methods for mutation prediction, which is surprising given their simplicity. This shows that new end-to-end image analysis pipelines in computational pathology should be compared to classical weakly-supervised methods. Also, these findings motivate the development of new methods which combine the elegant assumptions of MIL with the empirically observed higher performance of classical weakly-supervised approaches. We make all source codes publicly available at https://github.com/KatherLab/HIA, allowing easy application of all methods to any similar task.


Assuntos
Aprendizado Profundo , Inteligência Artificial , Benchmarking , Humanos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado
11.
Nat Med ; 28(6): 1232-1239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35469069

RESUMO

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias/genética , Coloração e Rotulagem , Reino Unido
12.
Front Genet ; 12: 806386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35251119

RESUMO

In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types. In addition, genetic changes in solid tumors primarily act by changing signaling pathways that regulate cell behaviour. In this study, we hypothesized that Deep Learning networks can be trained to directly predict alterations of genes and pathways across a spectrum of solid tumors. We manually outlined tumor tissue in H&E-stained tissue sections from 7,829 patients with 23 different tumor types from The Cancer Genome Atlas. We then trained convolutional neural networks in an end-to-end way to detect alterations in the most clinically relevant pathways or genes, directly from histology images. Using this automatic approach, we found that alterations in 12 out of 14 clinically relevant pathways and numerous single gene alterations appear to be detectable in tissue sections, many of which have not been reported before. Interestingly, we show that the prediction performance for single gene alterations is better than that for pathway alterations. Collectively, these data demonstrate the predictability of genetic alterations directly from routine cancer histology images and show that individual genes leave a stronger morphological signature than genetic pathways.

13.
Lancet Digit Health ; 3(10): e654-e664, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417147

RESUMO

BACKGROUND: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. METHODS: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. FINDINGS: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522-0·737) to 0·836 (0·795-0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752-0·841) to 0·897 (0·513-0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676-0·794) to 0·863 (0·747-0·969) for detection of microsatellite instability and from 0·672 (0·403-0·989) to 0·859 (0·823-0·919) for detection of EBV status. INTERPRETATION: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. FUNDING: German Cancer Aid and German Federal Ministry of Health.


Assuntos
Aprendizado Profundo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Instabilidade de Microssatélites , Neoplasias Gástricas/complicações , Neoplasias Gástricas/genética , Idoso , Estudos de Coortes , Feminino , Alemanha , Técnicas Histológicas/métodos , Humanos , Itália , Japão , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , República da Coreia , Estudos Retrospectivos , Suíça , Reino Unido , Estados Unidos
14.
Nat Cancer ; 1(8): 789-799, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33763651

RESUMO

Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learning can consistently infer a wide range of genetic mutations, molecular tumor subtypes, gene expression signatures and standard pathology biomarkers directly from routine histology. We developed, optimized, validated and publicly released a one-stop-shop workflow and applied it to tissue slides of more than 5000 patients across multiple solid tumors. Our findings show that a single deep learning algorithm can be trained to predict a wide range of molecular alterations from routine, paraffin-embedded histology slides stained with hematoxylin and eosin. These predictions generalize to other populations and are spatially resolved. Our method can be implemented on mobile hardware, potentially enabling point-of-care diagnostics for personalized cancer treatment. More generally, this approach could elucidate and quantify genotype-phenotype links in cancer.


Assuntos
Aprendizado Profundo , Neoplasias , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Mutação , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa