Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Water Health ; 18(2): 229-238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300095

RESUMO

The aim of this study was to identify the main sources of fecal pollution at popular beaches and rivers in the island of Trinidad. Escherichia coli enumeration and microbial source tracking (MST) were used to identify the primary sources of fecal bacteria contamination at the sites. Nineteen sites exceeded USEPA water quality standards for safe recreational use. Highest levels of fecal contamination were recorded on the central and west coasts of the island and included Brickfield River (4,839 MPN 100 ml-1), Orange Valley Bay (2,406.6 MPN 100 ml-1) and Chaguaramas Bay (1,921.2 MPN 100 ml-1). MST detected human (HF183) fecal pollution at ∼63%, birds at ∼67%, chicken at ∼36% and cattle (BacCow) at ∼34% of the sites. MST is a useful and rapid method for identifying major sources of fecal pollution in rivers and beaches. In Trinidad water bodies, the main sources of fecal pollution were humans and birds. The large number of sites with elevated levels of fecal pollution detected is particularly alarming and represents a serious public health risk.


Assuntos
Praias , Monitoramento Ambiental , Fezes , Rios , Poluição da Água/análise , Animais , Bovinos , Humanos , Trinidad e Tobago , Microbiologia da Água
2.
Water Environ Res ; 87(4): 358-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26462080

RESUMO

A wetland system made up of linked basins was investigated to determine its role in local flood control and contaminant filtration. The study focused on a wetland basin that is dominated by the Celtis laevigata plant and is underlain by clay, with a small sandy layer approximately 1 m below surface. Field and laboratory data were collected to understand the transport and filtration of phosphate, iron, and nitrate. Field results showed the wetland to effectively reduce iron and phosphates from runoff via groundwater flow. These results also showed an increase in the phosphate concentration of surface water while within the basin, resulting from agitation of wetland sediments. Laboratory column experiments showed more than 90% reduction in phosphorus and iron while nitrate concentrations increased above the input concentration. Phosphate and iron were high in wetland water immediately after a rain event. Nitrate concentrations increased as the water filtered through the sediments due to desorption of previously adsorbed nitrates. This wetland could potentially act as a temporal hot spot and rain events as hot moments for these substances. Therefore, the best flood control measure for this site would be to increase residence time in the wetland. This would help to better manage/control the concentration of phosphate, iron and nitrate pollution in surface waters.


Assuntos
Cidades , Filtração/métodos , Movimentos da Água , Poluentes Químicos da Água/isolamento & purificação , Áreas Alagadas , Biodegradação Ambiental , Inundações , Georgia , Ferro/isolamento & purificação , Nitratos/isolamento & purificação , Rios/química , Solo/química
3.
Ground Water ; 48(2): 295-305, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19210559

RESUMO

Seven villages in southeastern Kenya surround Mt. Kasigau and depend on the mountain's cloud forest for their water supply. Five of these villages have regularly experienced water shortages, and all village water supplies were contaminated with Escherichia coli bacteria. There is a need to economically find new sources of fresh ground water. Remote sensing offers a relatively quick and cost-effective way of identifying areas with high potential for ground water development. This study used spectral properties of features on Landsat remote sensing imagery to map linear features, soil types, surface moisture, and vegetation. Linear features represented geologic or geomorphologic features indicating either shallow ground water or areas of increased subsurface hydraulic conductivity. Regarding soil type, black soils were identified as potential indicators of shallow aquifers based on their relatively lower elevation and association with river valleys. A vegetation map was created using unsupervised classification, and three of the resulting vegetation classes were observed to be commonly associated with wet areas and/or ground water discharge. A wetness map, created using tasseled cap analysis, was used to identify all areas of high ground moisture, including those that corresponded to vegetated areas. The linear features, soil type, vegetation, and wetness maps were overlaid to produce a composite that highlighted areas with the highest potential for ground water development. Electrical resistivity surveys confirmed that areas highlighted by the composite image had relatively shallow depths to the water table. Some figures in this paper are available in color in the online version of the paper.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Comunicações Via Satélite , Movimentos da Água , Abastecimento de Água , Quênia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa