Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782133

RESUMO

Rift Valley fever virus (RVFV), an emerging arboviral and zoonotic bunyavirus, causes severe disease in livestock and humans. Here, we report the isolation of a panel of monoclonal antibodies (mAbs) from the B cells of immune individuals following natural infection in Kenya or immunization with MP-12 vaccine. The B cell responses of individuals who were vaccinated or naturally infected recognized similar epitopes on both Gc and Gn proteins. The Gn-specific mAbs and two mAbs that do not recognize either monomeric Gc or Gn alone but recognized the hetero-oligomer glycoprotein complex (Gc+Gn) when Gc and Gn were coexpressed exhibited potent neutralizing activities in vitro, while Gc-specific mAbs exhibited relatively lower neutralizing capacity. The two Gc+Gn-specific mAbs and the Gn domain A-specific mAbs inhibited RVFV fusion to cells, suggesting that mAbs can inhibit the exposure of the fusion loop in Gc, a class II fusion protein, and thus prevent fusion by an indirect mechanism without direct fusion loop contact. Competition-binding analysis with coexpressed Gc/Gn and mutagenesis library screening indicated that these mAbs recognize four major antigenic sites, with two sites of vulnerability for neutralization on Gn. In experimental models of infection in mice, representative mAbs recognizing three of the antigenic sites reduced morbidity and mortality when used at a low dose in both prophylactic and therapeutic settings. This study identifies multiple candidate mAbs that may be suitable for use in humans against RVFV infection and highlights fusion inhibition against bunyaviruses as a potential contributor to potent antibody-mediated neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus da Febre do Vale do Rift/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Epitopos/química , Epitopos/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Vero , Proteínas Virais de Fusão/química
2.
Parasitol Res ; 122(3): 801-814, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683088

RESUMO

Aedes aegypti is an important vector of several arboviruses including dengue and chikungunya viruses. Accurate identification of larval habitats of Ae. aegypti is considered an essential step in targeted control. This study determined Ae. aegypti productivity in selected larval habitats in Msambweni, Kwale County, Kenya. Three sequential larval habitat surveys were conducted. The first survey was habitat census (baseline) through which 83 representative larval habitats were identified and selected. The second and third surveys involved estimating daily productivity of the 83 selected larval habitats for 30 consecutive days during a wet and a dry season, respectively. Of 664 larval habitats examined at baseline, 144 larval habitats (21.7%) were found to be infested with Ae. aegypti larvae. At baseline, majority (71%) of the pupae were collected from two (2/6) larval habitat types, tires and pots. Multivariate analysis identified habitat type and the habitat being movable as the predictors for pupal abundance. During the 30-day daily pupal production surveys, only a few of the habitats harbored pupae persistently. Pupae were found in 28% and 12% of the larval habitats during the wet and dry seasons, respectively. In the wet season, drums, tires, and pots were identified as the key habitat types accounting for 85% of all pupae sampled. Three habitats (all drums) accounted for 80% of all the pupae collected in the dry season. Predictors for pupal productivity in the wet season were habitat type, place (whether the habitat is located at the back or front of the house), habitat purpose (use of the water in the habitat), and source of water. Although the multivariate model for habitat type did not converge, habitat type and habitat size were the only significant predictors during the dry season. Drums, pots, and tires were sources of more than 85% of Ae. aegypti pupae, reinforcing the "key container concept." Targeting these three types of habitats makes epidemiological sense, especially during the dry season.


Assuntos
Aedes , Dengue , Animais , Pupa , Larva , Quênia , Mosquitos Vetores , Ecossistema , Estações do Ano , Água
3.
Emerg Infect Dis ; 26(11): 2638-2650, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079035

RESUMO

Little is known about the extent and serotypes of dengue viruses circulating in Africa. We evaluated the presence of dengue viremia during 4 years of surveillance (2014-2017) among children with febrile illness in Kenya. Acutely ill febrile children were recruited from 4 clinical sites in western and coastal Kenya, and 1,022 participant samples were tested by using a highly sensitive real-time reverse transcription PCR. A complete case analysis with genomic sequencing and phylogenetic analyses was conducted to characterize the presence of dengue viremia among participants during 2014-2017. Dengue viremia was detected in 41.9% (361/862) of outpatient children who had undifferentiated febrile illness in Kenya. Of children with confirmed dengue viremia, 51.5% (150/291) had malaria parasitemia. All 4 dengue virus serotypes were detected, and phylogenetic analyses showed several viruses from novel lineages. Our results suggests high levels of dengue virus infection among children with undifferentiated febrile illness in Kenya.


Assuntos
Vírus da Dengue , Dengue , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Dengue/epidemiologia , Vírus da Dengue/classificação , Febre/epidemiologia , Febre/virologia , Humanos , Quênia/epidemiologia , Filogenia , Sorogrupo
4.
Emerg Infect Dis ; 23(11): 1915-1917, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29048283

RESUMO

We detected a cluster of dengue virus infections in children in Kenya during July 2014-June 2015. Most cases were serotype 1, but we detected all 4 serotypes, including co-infections with 2 serotypes. Our findings implicate dengue as a cause of febrile illness in this population and highlight a need for robust arbovirus surveillance.


Assuntos
Vírus da Dengue/imunologia , Dengue/virologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Coinfecção , Dengue/epidemiologia , Vírus da Dengue/isolamento & purificação , Feminino , Febre , Humanos , Lactente , Quênia/epidemiologia , Masculino
5.
AMA J Ethics ; 26(2): E132-141, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306203

RESUMO

The environments in which we live affect individual and community risk for disease transmission and illness severity. Communities' and neighborhoods' waste stream management designs and health care organizations' spatial and structural architecture also influence individuals' and communities' pathogenic vulnerabilities and how well health sector industrial hygiene practices support them. This article describes a One Health approach to planetary environmental health and suggests strategies for implementing a One Health or Planetary Health approach in the context of climate change.


Assuntos
Gerenciamento de Resíduos , Humanos , Ocupações em Saúde , Estudantes
6.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260355

RESUMO

Aedes-borne pathogens have been increasing in incidence in recent decades despite vector control activities implemented in endemic settings. Vector control for Aedes-transmitted arboviruses typically focuses on households because vectors breed in household containers and bite indoors. Yet, our recent work shows a high abundance of Aedes spp. vectors in public spaces. To investigate the impact of non-household environments on dengue transmission and control, we used field data on the number of water containers and abundance of Aedes mosquitoes in Household (HH) and Non-Household (NH) environments in two Kenyan cities, Kisumu and Ukunda, from 2019-2022. Incorporating information on human activity space, we developed an agent-based model to simulate city-wide conditions considering HH and five types of NH environments in which people move and interact with other humans and vectors during peak biting times. We additionally evaluated the outcome of vector control activities implemented in different environments in preventive (before an epidemic) and reactive (after an epidemic commences) scenarios. We estimated that over half of infections take place in NH environments, where the main spaces for transmission are workplaces, markets, and recreational locations. Accordingly, results highlight the important role of vector control activities at NH locations to reduce dengue. A greater reduction of cases is expected as control activities are implemented earlier, at higher levels of coverage, with greater effectiveness when targeting only NH as opposed to when targeting only HH. Further, local ecological factors such as the differential abundance of water containers within cities are also influential factors to consider for control. This work provides insight into the importance of vector control in both household and non-household environments in endemic settings. It highlights a specific approach to inform evidence-based decision making to target limited vector control resources for optimal control.

7.
Malar J ; 12: 46, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23374429

RESUMO

BACKGROUND: Despite the extensive ownership and use of insecticide-treated nets (ITNs) over the last decade, the effective lifespan of these nets, especially their physical integrity, under true operational conditions is not well-understood. Usefulness of nets declines primarily due to physical damage or loss of insecticidal activity. METHODS: A community based cross-sectional survey was used to determine the physical condition and to identify predictors of poor physical condition for bed nets owned by individuals from communities in Kwale County, coastal Kenya. A proportionate hole index (pHI) was used as a standard measure, and the cut-offs for an 'effective net' (offer substantial protection against mosquito bites) and 'ineffective nets' (offer little or no protection against mosquito bites) were determined (pHI ≤88 (about ≤500 cm2 of holes surface area) and pHI of >88 (≥500 cm2 of holes surface area), respectively). RESULTS: The vast majority (78%) of the surveyed nets had some holes. The median pHI was 92 (range: 1-2,980). Overall, half of the nets were categorized as 'effective nets' or 'serviceable nets'. Physical deterioration of nets was associated with higher use and washing frequency. Young children and older children were found to use ineffective bed nets significantly more often than infants, while the physical integrity of nets owned by pregnant women was similar to those owned by infants. Estuarine environment inhabitants owned nets with the worst physical condition, while nets owned by the coastal slope inhabitants were in fairly good physical condition. The results suggest that bed nets are optimally utilized when they are new and physically intact. Thereafter, bed net utilization decreases gradually with increasing physical deterioration, with most net owners withdrawing physically damaged nets from routine use.This withdrawal commonly happens following 1.5 years of use, making bed net use the most important predictor of physical integrity. On average, the nets were washed twice within six months prior to the survey. Washing frequency was significantly influenced by the bed net colour and bed net age. Lack of knowledge on reasons for net retreatment and the retreatment procedure was evident, while net repair was minimal and did not seem to improve the physical condition of the nets. The "catch-up" bed net distribution strategies are sufficient for ensuring adequate ownership and utilization of 'effective nets' in the targeted groups, but bi-annual mass distribution is necessary to provide similar ownership and utilization for the other groups not targeted by "catch-up" strategies. CONCLUSIONS: Monitoring and maintenance strategies that will deliver locally appropriate education messages on net washing and repair will enhance the effectiveness of malaria control programmes, and further research to assess ineffective nets need is needed.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Manutenção/métodos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária/epidemiologia
8.
J Med Entomol ; 50(5): 1140-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24180120

RESUMO

Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.


Assuntos
Culicidae/parasitologia , Insetos Vetores/parasitologia , Malária Falciparum/parasitologia , Controle de Mosquitos/métodos , Plasmodium falciparum/fisiologia , Animais , Culicidae/classificação , Filariose Linfática/parasitologia , Meio Ambiente , Ensaio de Imunoadsorção Enzimática , Feminino , Insetos Vetores/classificação , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Masculino , Especificidade da Espécie
9.
Trans R Soc Trop Med Hyg ; 117(9): 637-644, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042291

RESUMO

BACKGROUND: Complications of urogenital schistosomiasis include acute inflammatory and chronic fibrotic changes within the urogenital tract. Disease burden of this neglected tropical disease is often underestimated, as only active, urine egg-patent Schistosoma infection is formally considered. Previous studies have focussed on short-term effects of praziquantel treatment on urinary tract pathology, demonstrating that acute inflammation is reversible. However, the reversibility of chronic changes is less well studied. METHODS: Our study compared, at two time points 14 y apart, urine egg-patent infection and urinary tract pathology in a cohort of women living in a highly endemic area having intermittent praziquantel treatment(s). In 2014 we matched 93 women to their findings in a previous study in 2000. RESULTS: Between 2000 and 2014 the rate of egg-patent infection decreased from 34% (95% confidence interval [CI] 25 to 44) to 9% (95% CI 3 to 14). However, urinary tract pathology increased from 15% (95% CI 8 to 22) to 19% (95% CI 11 to 27), with the greatest increase seen in bladder thickening and shape abnormality. CONCLUSIONS: Despite praziquantel treatment, fibrosis from chronic schistosomiasis outlasts the presence of active infection, continuing to cause lasting morbidity. We suggest that future efforts to eliminate persistent morbidity attributable to schistosomiasis should include intensified disease management.


Assuntos
Esquistossomose Urinária , Sistema Urinário , Humanos , Feminino , Esquistossomose Urinária/complicações , Esquistossomose Urinária/diagnóstico por imagem , Esquistossomose Urinária/tratamento farmacológico , Praziquantel/uso terapêutico , Seguimentos , Quênia/epidemiologia , Sistema Urinário/diagnóstico por imagem
10.
Viruses ; 15(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37515236

RESUMO

Most vector control activities in urban areas are focused on household environments; however, information relating to infection risks in spaces other than households is poor, and the relative risk that these spaces represent has not yet been fully understood. We used data-driven simulations to investigate the importance of household and non-household environments for dengue entomological risk in two Kenyan cities where dengue circulation has been reported. Fieldwork was performed using four strategies that targeted different stages of mosquitoes: ovitraps, larval collections, Prokopack aspiration, and BG-sentinel traps. Data were analyzed separately between household and non-household environments to assess mosquito presence, the number of vectors collected, and the risk factors for vector presence. With these data, we simulated vector and human populations to estimate the parameter m and mosquito-to-human density in both household and non-household environments. Among the analyzed variables, the main difference was found in mosquito abundance, which was consistently higher in non-household environments in Kisumu but was similar in Ukunda. Risk factor analysis suggests that small, clean water-related containers serve as mosquito breeding places in households as opposed to the trash- and rainfall-related containers found in non-household structures. We found that the density of vectors (m) was higher in non-household than household environments in Kisumu and was also similar or slightly lower between both environments in Ukunda. These results suggest that because vectors are abundant, there is a potential risk of transmission in non-household environments; hence, vector control activities should take these spaces into account.


Assuntos
Aedes , Dengue , Animais , Humanos , Dengue/prevenção & controle , Mosquitos Vetores , Quênia , Características da Família , Controle de Mosquitos/métodos
11.
PLOS Glob Public Health ; 3(7): e0001950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494331

RESUMO

Poor access to diagnostic testing in resource limited settings restricts surveillance for emerging infections, such as dengue virus (DENV), to clinician suspicion, based on history and exam observations alone. We investigated the ability of machine learning to detect DENV based solely on data available at the clinic visit. We extracted symptom and physical exam data from 6,208 pediatric febrile illness visits to Kenyan public health clinics from 2014-2019 and created a dataset with 113 clinical features. Malaria testing was available at the clinic site. DENV testing was performed afterwards. We randomly sampled 70% of the dataset to develop DENV and malaria prediction models using boosted logistic regression, decision trees and random forests, support vector machines, naïve Bayes, and neural networks with 10-fold cross validation, tuned to maximize accuracy. 30% of the dataset was reserved to validate the models. 485 subjects (7.8%) had DENV, and 3,145 subjects (50.7%) had malaria. 220 (3.5%) subjects had co-infection with both DENV and malaria. In the validation dataset, clinician accuracy for diagnosis of malaria was high (82% accuracy, 85% sensitivity, 80% specificity). Accuracy of the models for predicting malaria diagnosis ranged from 53-69% (35-94% sensitivity, 11-80% specificity). In contrast, clinicians detected only 21 of 145 cases of DENV (80% accuracy, 14% sensitivity, 85% specificity). Of the six models, only logistic regression identified any DENV case (8 cases, 91% accuracy, 5.5% sensitivity, 98% specificity). Without diagnostic testing, interpretation of clinical findings by humans or machines cannot detect DENV at 8% prevalence. Access to point-of-care diagnostic tests must be prioritized to address global inequities in emerging infections surveillance.

12.
PLoS Negl Trop Dis ; 16(4): e0010199, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363780

RESUMO

BACKGROUND: Since Aedes aegypti mosquitoes preferentially breed in domestic containers, control efforts focus on larval source reduction. Our objectives were to design and test the effectiveness of a source reduction intervention to improve caregiver knowledge and behaviors in coastal Kenya. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a cluster-randomized controlled trial with 261 households from 5 control villages and 259 households from 5 intervention villages. From each household, one child (10-16 years old) and his or her primary caregiver participated in the intervention. We assessed caregiver knowledge and behavior at baseline, as well as 3 and 12 months after the intervention. We assessed household entomological indices at baseline and 12 months after the intervention to avoid seasonal interference. We conducted qualitative interviews with 34 caregivers to understand barriers and facilitators to change. We counted and weighed containers collected by children and parents during a community container clean-up and recycling event. After 12 months, caregiver knowledge about and self-reported behavior related to at least one source reduction technique was more than 50 percentage points higher in the intervention compared to control arm (adjusted risk differences for knowledge: 0.69, 95% CI [0.56 to 0.82], and behavior: 0.58 [0.43 to 0.73]). Respondents stated that other family members' actions were the primary barriers to proper container management. The number of containers at households did not differ significantly across arms even though children and parents collected 17,200 containers (1 ton of plastics) which were used to planted 4,000 native trees as part of the community event. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that source reduction interventions can be effective if designed with an understanding of the social and entomological context. Further, source reduction is not an individual issue, but rather a social/communal issue, requiring the participation of other household and community members to be sustained.


Assuntos
Aedes , Dengue , Adolescente , Animais , Criança , Feminino , Humanos , Quênia , Larva , Masculino , Controle de Mosquitos/métodos , Melhoramento Vegetal
13.
Front Nutr ; 9: 830294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677545

RESUMO

Background: Vaccine and sufficient food availability are key factors for reducing pneumonia outbreaks in sub-Saharan Africa. Methods: In this study, the 10-valent pneumococcal conjugate vaccine (Synflorix® or PCV10) was administered to a child cohort (5-7 years old, n = 237) in Msambweni, Kenya, to determine relationships between dietary intake, nutritional/socioeconomic status of mothers/caregivers, and vaccine response. 7-day food frequency questionnaire (FFQ), dietary diversity score (DDS) and single 24-h dietary recall were used to address participants' dietary assessment and nutritional status. Individual food varieties were recorded and divided into 9 food groups as recommended by Food and Agriculture Organization. Anthropometric measurements, nasopharyngeal swabs and vaccine administration were performed at the initial visit. Participants were followed 4-8 weeks with a blood draw for pneumococcal IgG titers assessed by Luminex assay. Findings: Chronic malnutrition was prevalent in the cohort (15% stunting, 16% underweight). Unbalanced dietary intake was observed, with mean energy intake 14% below Recommended Dietary Allowances (1,822 Kcal) for 5-7 years age range. 72% of the daily energy was derived from carbohydrates, 18% from fats and only 10% from proteins. Poor anthropometric status (stunting/underweight) was associated with low socioeconomic/educational status and younger mother/caregiver age (p < 0.002). Limited intake of essential micronutrients (vitamins A, E, K) and minerals (calcium, potassium) associated with low consumption of fresh fruits, vegetables, and animal source foods (dairy, meat) was observed and correlated with poor vaccine response (p < 0.001). In contrast, children who consumed higher amounts of dietary fiber, vitamin B1, zinc, iron, and magnesium had adequate vaccine response (p < 0.05). Correlation between higher dietary diversity score (DDS), higher Vitamin E, K, Zinc intake and adequate vaccine response was also observed (p < 0.03). Interpretation: Overall, this study highlights ongoing food scarcity and malnutrition in Kenya and demonstrates the links between adequate socioeconomic conditions, adequate nutrient intake, and vaccine efficacy.

14.
Malar J ; 10: 356, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22165904

RESUMO

BACKGROUND: Besides significantly reducing malaria vector densities, prolonged usage of bed nets has been linked to decline of Anopheles gambiae s.s. relative to Anopheles arabiensis, changes in host feeding preference of malaria vectors, and behavioural shifts to exophagy (outdoor biting) for the two important malaria vectors in Africa, An. gambiae s.l. and Anopheles funestus. In southern coastal Kenya, bed net use was negligible in 1997-1998 when Anopheles funestus and An. gambiae s.s. were the primary malaria vectors, with An. arabiensis and Anopheles merus playing a secondary role. Since 2001, bed net use has increased progressively and reached high levels by 2009-2010 with corresponding decline in malaria transmission. METHODS: To evaluate the impact of the substantial increase in household bed net use within this area on vector density, vector composition, and human-vector contact, indoor and outdoor resting mosquitoes were collected in the same region during 2009-2010 using pyrethrum spray catches and clay pots for indoor and outdoor collections respectively. Information on bed net use per sleeping spaces and factors influencing mosquito density were determined in the same houses using Poisson regression analysis. Species distribution was determined, and number of mosquitoes per house, human-biting rates (HBR), and entomological inoculation rate (EIR) were compared to those reported for the same area during 1997-1998, when bed net coverage had been minimal. RESULTS: Compared to 1997-1998, a significant decline in the relative proportion of An. gambiae s.s. among collected mosquitoes was noted, coupled with a proportionate increase of An. arabiensis. Following > 5 years of 60-86% coverage with bed nets, the density, human biting rate and EIR of indoor resting mosquitoes were reduced by more than 92% for An. funestus and by 75% for An. gambiae s.l. In addition, the host feeding choice of both vectors shifted more toward non-human vertebrates. Besides bed net use, malaria vector abundance was also influenced by type of house construction and according to whether one sleeps on a bed or a mat (both of these are associated with household wealth). Mosquito density was positively associated with presence of domestic animals. CONCLUSIONS: These entomological indices indicate a much reduced human biting rate and a diminishing role of An. gambiae s.s. in malaria transmission following high bed net coverage. While increasing bed net coverage beyond the current levels may not significantly reduce the transmission potential of An. arabiensis, it is anticipated that increasing or at least sustaining high bed net coverage will result in a diminished role for An. funestus in malaria transmission.


Assuntos
Anopheles/parasitologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária Falciparum/transmissão , Controle de Mosquitos/métodos , Animais , Anopheles/fisiologia , Comportamento Alimentar , Feminino , Habitação , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Insetos Vetores/parasitologia , Inseticidas , Quênia/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Plasmodium falciparum/patogenicidade , Densidade Demográfica , Análise de Regressão , Estações do Ano , Estatística como Assunto
15.
Am J Trop Med Hyg ; 104(4): 1435-1437, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33617476

RESUMO

O'nyong-nyong virus (ONNV) is a little-known arbovirus causing intermittent, yet explosive, outbreaks in Africa. It is closely related to chikungunya virus, an emerging infectious disease. O'nyong-nyong virus causes a self-limited illness characterized by bilateral polyarthritis, rash, low-grade fever, and lymphadenopathy. In 1959, an extensive outbreak of ONNV occurred in East Africa, and decades later, another large outbreak was documented in Uganda in 1996. Limited evidence for interepidemic transmission is available, although serologic studies indicate a high prevalence of exposure. 1,045 febrile child participants in western and coastal Kenya were tested for the presence of ONNV using a multiplexed real-time reverse transcriptase-PCR assay. More than half of the participants had malaria parasitemia, and there was no evidence of active ONNV viremia in these participants. Further work is required to better understand the interepidemic circulation of ONNV and to reconcile evidence of high serologic exposure to ONNV among individuals in East Africa.


Assuntos
Infecções por Alphavirus/epidemiologia , Febre/epidemiologia , Viremia/epidemiologia , Adolescente , Infecções por Alphavirus/sangue , Criança , Pré-Escolar , Doenças Transmissíveis Emergentes/sangue , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças , Febre/etiologia , Humanos , Lactente , Quênia/epidemiologia , Vírus O'nyong-nyong/imunologia , Vírus O'nyong-nyong/patogenicidade , Estudos Soroepidemiológicos , Viremia/etiologia
16.
Nat Commun ; 12(1): 1233, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623008

RESUMO

Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.


Assuntos
Mudança Climática , Geografia , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/transmissão , Animais , Número Básico de Reprodução , Culicidae/fisiologia , Surtos de Doenças , Equador/epidemiologia , Humanos , Quênia/epidemiologia , Modelos Biológicos , Dinâmica não Linear , Fatores Socioeconômicos , Análise Espaço-Temporal , Fatores de Tempo
17.
Malar J ; 9: 62, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20187956

RESUMO

BACKGROUND: High coverage of insecticide-treated bed nets in Asembo and low coverage in Seme, two adjacent communities in western Nyanza Province, Kenya; followed by expanded coverage of bed nets in Seme, as the Kenya national malaria programme rolled out; provided a natural experiment for quantification of changes in relative abundance of two primary malaria vectors in this holoendemic region. Both belong to the Anopheles gambiae sensu lato (s.l.) species complex, namely A. gambiae sensu stricto (s.s.) and Anopheles arabiensis. Historically, the former species was proportionately dominant in indoor resting collections of females. METHODS: Data of the relative abundance of adult A. gambiae s.s. and A. arabiensis sampled from inside houses were obtained from the literature from 1970 to 2002 for sites west of Kisumu, Kenya, to the region of Asembo ca. 50 km from the city. A sampling transect was established from Asembo (where bed net use was high due to presence of a managed bed net distribution programme) eastward to Seme, where no bed net programme was in place. Adults of A. gambiae s.l. were sampled from inside houses along the transect from 2003 to 2009, as were larvae from nearby aquatic habitats, providing data over a nearly 40 year period of the relative abundance of the two species. Relative proportions of A. gambiae s.s. and A. arabiensis were determined for each stage by identifying species by the polymerase chain reaction method. Household bed net ownership was measured with surveys during mosquito collections. Data of blood host choice, parity rate, and infection rate for Plasmodium falciparum in A. gambiae s.s. and A. arabiensis were obtained for a sample from Asembo and Seme from 2005. RESULTS: Anopheles gambiae s.s. adult females from indoor collections predominated from 1970 to 1998 (ca. 85%). Beginning in 1999, A. gambiae s.s decreased proportionately relative to A. arabiensis, then precipitously declined to rarity coincident with increased bed net ownership as national bed net distribution programmes commenced in 2004 and 2006. By 2009, A. gambiae s.s. comprised proportionately ca. 1% of indoor collections and A. arabiensis 99%. In Seme compared to Asembo in 2003, proportionately more larvae were A. gambiae s.s., larval density was higher, and more larval habitats were occupied. As bed net use rose in Seme, the proportion of A. gambiae larvae declined as well. These trends continued to 2009. Parity and malaria infection rates were lower in both species in Asembo (high bed net use) compared to Seme (low bed net use), but host choice did not vary within species in both communities (predominantly cattle for A. arabiensis, humans for A. gambiae s.s.). CONCLUSIONS: A marked decline of the A. gambiae s.s. population occurred as household ownership of bed nets rose in a region of western Kenya over a 10 year period. The increased bed net coverage likely caused a mass effect on the composition of the A. gambiae s.l. species complex, resulting in the observed proportionate increase in A. arabiensis compared to its closely related sibling species, A. gambiae s.s. These observations are important in evaluating the process of regional malaria elimination, which requires sustained vector control as a primary intervention.


Assuntos
Anopheles/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Inseticidas , Controle de Mosquitos/métodos , Adulto , Animais , Bovinos , Feminino , Humanos , Insetos Vetores/genética , Quênia/epidemiologia , Larva , Estudos Longitudinais , Masculino , Densidade Demográfica , Dinâmica Populacional
18.
PLoS Negl Trop Dis ; 14(5): e0008239, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392226

RESUMO

Understanding mosquito breeding behavior as well as human perspectives and practices are crucial for designing interventions to control Aedes aegypti mosquito-borne diseases as these mosquitoes primarily breed in water-holding containers around people's homes. The objectives of this study were to identify productive mosquito breeding habitats in coastal Kenya and to understand household mosquito management behaviors and their behavioral determinants. The field team conducted entomological surveys in 444 households and semi-structured interviews with 35 female caregivers and 37 children in Kwale County, coastal Kenya, between May and December 2016. All potential mosquito habitats with or without water were located, abundances of mosquito immatures measured and their characteristics recorded. Interviews explored household mosquito management behaviors and their behavioral determinants. 2,452 container mosquito habitats were counted containing 1,077 larvae and 390 pupae, predominantly Aedes species. More than one-third of the positive containers were found outside houses in 1 of the 10 villages. Containers holding water with no intended purpose contained 55.2% of all immature mosquitoes. Containers filled with rainwater held 95.8% of all immature mosquitoes. Interviews indicated that households prioritize sleeping under bednets as a primary protection against mosquito-borne disease because of concern about night-time biting, malaria-transmitting Anopheles mosquitoes. Respondents had limited knowledge about the mosquito life cycle, especially with respect to day-time biting, container-breeding Aedes mosquitoes. Therefore, respondents did not prioritize source reduction. Most mosquitoes breed in containers that have no direct or immediate purpose ("no-purpose containers"). These containers may be left unattended for several days allowing rainwater to collect, and creating ideal conditions for mosquito breeding. An intervention that requires little effort and targets only the most productive containers could effectively reduce mosquito indices and, relatedly, mosquito-borne disease risk.


Assuntos
Aedes/crescimento & desenvolvimento , Anopheles/crescimento & desenvolvimento , Ecossistema , Características da Família , Conhecimentos, Atitudes e Prática em Saúde , Controle de Mosquitos/métodos , Adulto , Animais , Criança , Feminino , Humanos , Entrevistas como Assunto , Quênia , Masculino , Pessoa de Meia-Idade , Densidade Demográfica , Adulto Jovem
19.
PLoS Negl Trop Dis ; 14(6): e0008362, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559197

RESUMO

Arboviruses are among the most important emerging pathogens due to their increasing public health impact. In Kenya, continued population growth and associated urbanization are conducive to vector spread in both urban and rural environments, yet mechanisms of viral amplification in vector populations is often overlooked when assessing risks for outbreaks. Thus, the characterization of local arbovirus circulation in mosquito populations is imperative to better inform risk assessments and vector control practices. Aedes species mosquitoes were captured at varying stages of their life cycle during different seasons between January 2014 and May 2016 at four distinct sites in Kenya, and tested for chikungunya (CHIKV), dengue (DENV) and Zika (ZIKV) viruses by RT-PCR. CHIKV was detected in 45 (5.9%) and DENV in 3 (0.4%) mosquito pools. No ZIKV was detected. Significant regional variation in prevalence was observed, with greater frequency of CHIKV on the coast. DENV was detected exclusively on the coast. Both viruses were detected in immature mosquitoes of both sexes, providing evidence of transovarial transmission of these arboviruses in local mosquitoes. This phenomenon may be driving underlying viral maintenance that may largely contribute to periodic re-emergence among humans in Kenya.


Assuntos
Febre de Chikungunya/transmissão , Vírus Chikungunya/isolamento & purificação , Culicidae/virologia , Vírus da Dengue/isolamento & purificação , Dengue/transmissão , Aedes/fisiologia , Aedes/virologia , Animais , Arbovírus , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Culicidae/fisiologia , Dengue/epidemiologia , Dengue/virologia , Feminino , Humanos , Quênia/epidemiologia , Estágios do Ciclo de Vida , Masculino , Zika virus , Infecção por Zika virus/virologia
20.
Front Immunol ; 11: 1313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754150

RESUMO

Background: Iron deficiency may impair adaptive immunity and is common among African infants at time of vaccination. Whether iron deficiency impairs vaccine response and whether iron supplementation improves humoral vaccine response is uncertain. Methods: We performed two studies in southern coastal Kenya. In a birth cohort study, we followed infants to age 18 mo and assessed whether anemia or iron deficiency at time of vaccination predicted vaccine response to three-valent oral polio, diphtheria-tetanus-whole cell pertussis-Haemophilus influenzae type b vaccine, ten-valent pneumococcal-conjugate vaccine and measles vaccine. Primary outcomes were anti-vaccine-IgG and seroconversion at age 24 wk and 18 mo. In a randomized trial cohort follow-up, children received a micronutrient powder (MNP) with 5 mg iron daily or a MNP without iron for 4 mo starting at age 7.5 mo and received measles vaccine at 9 and 18 mo; primary outcomes were anti-measles IgG, seroconversion and avidity at age 11.5 mo and 4.5 y. Findings: In the birth cohort study, 573 infants were enrolled and 303 completed the study. Controlling for sex, birthweight, anthropometric indices and maternal antibodies, hemoglobin at time of vaccination was the strongest positive predictor of: (A) anti-diphtheria and anti-pertussis-IgG at 24 wk (p = 0.0071, p = 0.0339) and 18 mo (p = 0.0182, p = 0.0360); (B) anti-pertussis filamentous hemagglutinin-IgG at 24 wk (p = 0.0423); and (C) anti-pneumococcus 19 IgG at 18 mo (p = 0.0129). Anemia and serum transferrin receptor at time of vaccination were the strongest predictors of seroconversion against diphtheria (p = 0.0484, p = 0.0439) and pneumococcus 19 at 18 mo (p = 0.0199, p = 0.0327). In the randomized trial, 155 infants were recruited, 127 and 88 were assessed at age 11.5 mo and 4.5 y. Compared to infants that did not receive iron, those who received iron at time of vaccination had higher anti-measles-IgG (p = 0.0415), seroconversion (p = 0.0531) and IgG avidity (p = 0.0425) at 11.5 mo. Interpretation: In Kenyan infants, anemia and iron deficiency at time of vaccination predict decreased response to diphtheria, pertussis and pneumococcal vaccines. Primary response to measles vaccine may be increased by iron supplementation at time of vaccination. These findings argue that correction of iron deficiency during early infancy may improve vaccine response.


Assuntos
Anemia Ferropriva/imunologia , Suplementos Nutricionais , Ferro/administração & dosagem , Vacinas/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/sangue , Pré-Escolar , Estudos de Coortes , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Imunidade Humoral , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Masculino , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa