Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35779009

RESUMO

African wild pigs have a contentious evolutionary and biogeographic history. Until recently, desert warthog (Phacochoerus aethiopicus) and common warthog (P. africanus) were considered a single species. Molecular evidence surprisingly suggested they diverged at least 4.4 million years ago, and possibly outside of Africa. We sequenced the first whole-genomes of four desert warthogs and 35 common warthogs from throughout their range. We show that these two species diverged much later than previously estimated, 400,000-1,700,000 years ago depending on assumptions of gene flow. This brings it into agreement with the paleontological record. We found that the common warthog originated in western Africa and subsequently colonized eastern and southern Africa. During this range expansion, the common warthog interbred with the desert warthog, presumably in eastern Africa, underlining this region's importance in African biogeography. We found that immune system-related genes may have adaptively introgressed into common warthogs, indicating that resistance to novel diseases was one of the most potent drivers of evolution as common warthogs expanded their range. Hence, we solve some of the key controversies surrounding warthog evolution and reveal a complex evolutionary history involving range expansion, introgression, and adaptation to new diseases.


Assuntos
Resistência à Doença , Doenças dos Suínos , África , África Oriental , Animais , Sequência de Bases , Resistência à Doença/genética , Suínos
2.
Environ Manage ; 71(1): 159-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385979

RESUMO

Seedling banks are very important in forest regeneration following forest disturbances such as crop cultivation. In 2011 and 2013 the Uganda National Forestry Authority (NFA) evicted encroachers from parts of Mabira Central Forest Reserve that had been under crop cultivation for over 40 years. This gave an opportunity for the vegetation to recover. In this study, we assessed the recovery process based on seedling bank diversity, richness and density in three blocks differing in recovery time. Two disturbed blocks, the Western Block (WB) (abandoned by encroachers 1-3 years), and the Eastern Block (EB) (abandoned 4-5 years) before this study and a nearby undisturbed area (intact) were included in the study. We recorded 48 seedlings species; 37 in WB, 30 in EB and 27 in intact. Differences in species richness were not statistically significant among blocks (F2, 88 = 1.2420, p = 0.294). All seedling species found in the intact were found in the EB and WB. There were statistically significant differences in species diversity (Shannon-Wiener: F2, 88 = 5.354, p = 0.006), density (P < 0.001) and composition (ANOSIM; R = 0.55, p = 0.001) among blocks. Apart from Broussonetia papyrifera, other species contributing to the dissimilarity (Acalypha neptunica, Antiaris toxicaria, Blighia unijugata, Funtumia elastica were late succession species. Animal dispersed species dominated intact. Seed-regenerating species were found in both WB and EB, but re-sprouts were more common in EB. These results show that proximity to intact forest aids forest recovery, even for areas with long-term cultivation history.


Assuntos
Plântula , Árvores , Agricultura Florestal , Florestas , Uganda , Especificidade da Espécie
3.
BMC Vet Res ; 12: 5, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739166

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is endemic in Uganda in spite of the control measures used. Various aspects of the maintenance and circulation of FMD viruses (FMDV) in Uganda are not well understood; these include the role of the African buffalo (Syncerus caffer) as a reservoir for FMDV. To better understand the epidemiology of FMD at the livestock-wildlife-interface, samples were collected from young, unvaccinated cattle from 24 pastoral herds that closely interact with wildlife around Queen Elizabeth National Park in Uganda, and analysed for evidence of FMDV infection. RESULTS: In total, 37 (15%) of 247 serum samples had detectable antibodies against FMDV non-structural proteins (NSPs) using a pan-serotypic assay. Within these 37 sera, antibody titres ≥ 80 against the structural proteins of serotypes O, SAT 1, SAT 2 and SAT 3 were detected by ELISA in 5, 7, 4 and 3 samples, respectively, while neutralizing antibodies were only detected against serotype O in 3 samples. Two FMDV isolates, with identical VP1 coding sequences, were obtained from probang samples from clinically healthy calves from the same herd and are serotype SAT 1 (topotype IV (EA-I)). Based on the VP1 coding sequences, these viruses are distinct from previous cattle and buffalo SAT 1 FMDV isolates obtained from the same area (19-30% nucleotide difference) and from the vaccine strain (TAN/155/71) used within Uganda (26% nucleotide difference). Eight herds had only one or a few animals with antibodies against FMDV NSPs while six herds had more substantial evidence of prior infection with FMDV. There was no evidence for exposure to FMDV in the other ten herds. CONCLUSIONS: The two identical SAT 1 FMDV VP1 sequences are distinct from former buffalo and cattle isolates from the same area, thus, transmission between buffalo and cattle was not demonstrated. These new SAT 1 FMDV isolates differed significantly from the vaccine strain used to control Ugandan FMD outbreaks, indicating a need for vaccine matching studies. Only six herds had clear serological evidence for exposure to O and SAT 1 FMDV. Scattered presence of antibodies against FMDV in other herds may be due to the occasional introduction of animals to the area or maternal antibodies from past infection and/or vaccination. The evidence for asymptomatic FMDV infection has implications for disease control strategies in the area since this obstructs early disease detection that is based on clinical signs in FMDV infected animals.


Assuntos
Bovinos/virologia , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/virologia , Sequência de Aminoácidos , Animais , Animais Selvagens/virologia , Anticorpos Antivirais/análise , Líquidos Corporais/virologia , Búfalos/virologia , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/imunologia , Dados de Sequência Molecular , Parques Recreativos , RNA Viral/análise , Alinhamento de Sequência , Uganda/epidemiologia
4.
Mol Ecol ; 24(10): 2507-20, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25827243

RESUMO

Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial-drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi-aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range-wide sampling. We documented a global demographic and spatial expansion approximately 0.1-0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent-wide gene flow among hippopotamus populations, and hence, no clear continental-scale genetic structuring remains. Nevertheless, present-day hippopotamus populations are genetically disconnected, probably as a result of the mid-Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah-adapted ungulate mammals and should be further investigated in other water-associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long-term decline.


Assuntos
Evolução Molecular , Fluxo Gênico , Genética Populacional , Mamíferos/genética , África , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Haplótipos , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Dinâmica Populacional , Análise de Sequência de DNA
5.
BMC Vet Res ; 11: 17, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644407

RESUMO

BACKGROUND: Understanding the epidemiology of foot-and-mouth disease (FMD), including roles played by different hosts, is essential for improving disease control. The African buffalo (Syncerus caffer) is a reservoir for the SAT serotypes of FMD virus (FMDV). Large buffalo populations commonly intermingle with livestock in Kenya, yet earlier studies have focused on FMD in the domestic livestock, hence the contribution of buffalo to disease in livestock is largely unknown. This study analysed 47 epithelia collected from FMD outbreaks in Kenyan cattle between 2008 and 2012, and 102 probang and serum samples collected from buffalo in three different Kenyan ecosystems; Maasai-Mara (MME) (n = 40), Tsavo (TSE) (n = 33), and Meru (ME) (n = 29). RESULTS: Antibodies against FMDV non-structural proteins were found in 65 of 102 (64%) sera from buffalo with 44/102 and 53/102 also having neutralising antibodies directed against FMDV SAT 1 and SAT 2, respectively. FMDV RNA was detected in 42% of the buffalo probang samples by RT-qPCR (Cycle Threshold (Ct) ≤32). Two buffalo probang samples were positive by VI and were identified as FMDV SAT 1 and SAT 2 by Ag-ELISA, while the latter assay detected serotypes O (1), A (20), SAT 1 (7) and SAT 2 (19) in the 47 cattle epithelia. VP1 coding sequences were generated for two buffalo and 21 cattle samples. Phylogenetic analyses revealed SAT 1 and SAT 2 virus lineages within buffalo that were distinct from those detected in cattle. CONCLUSIONS: We found that FMDV serotypes O, A, SAT 1 and SAT 2 were circulating among cattle in Kenya and cause disease, but only SAT 1 and SAT 2 viruses were successfully isolated from clinically normal buffalo. The buffalo isolates were genetically distinct from isolates obtained from cattle. Control efforts should focus primarily on reducing FMDV circulation among livestock and limiting interaction with buffalo. Comprehensive studies incorporating additional buffalo viruses are recommended.


Assuntos
Doenças dos Bovinos/virologia , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Animais , Anticorpos Antivirais/sangue , Búfalos , Bovinos , Febre Aftosa/sangue , Febre Aftosa/epidemiologia , Vírus da Febre Aftosa/classificação , Regulação Viral da Expressão Gênica/fisiologia , Quênia/epidemiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
Trop Anim Health Prod ; 46(3): 575-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442573

RESUMO

Foot-and-mouth disease (FMD) is endemic in Kenya and has been well studied in cattle, but not in pigs, yet the role of pigs is recognised in FMD-free areas. This study investigated the presence of antibodies against FMD virus (FMDV) in pigs sampled during a countrywide random survey for FMD in cattle coinciding with SAT 1 FMDV outbreaks in cattle. A total of 191 serum samples were collected from clinically healthy pigs in 17 districts. Forty-two of the 191 sera were from pigs vaccinated against serotypes O/A/SAT 2 FMDV. Antibodies against FMDV non-structural proteins were found in sera from 30 vaccinated and 71 non-vaccinated pigs, altogether 101/191 sera (53 %), and 91 % of these (92/101) also had antibodies measurable by serotype-specific ELISAs, predominantly directed against SAT 1 with titres of 10-320. However, only five high titres against SAT 1 in vaccinated pigs were confirmed by virus neutralisation test (VNT). Due to high degree of agreement between the two ELISAs, it was concluded that positive pigs had been infected with FMDV. Implications of these results for the role of pigs in the epidemiology of FMD in Kenya are discussed, and in-depth studies are recommended.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/epidemiologia , Doenças dos Suínos/epidemiologia , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Febre Aftosa/sangue , Quênia/epidemiologia , Testes de Neutralização , Estudos Soroepidemiológicos , Testes Sorológicos , Suínos
7.
BMC Vet Res ; 9: 19, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347795

RESUMO

BACKGROUND: Accurate diagnosis is pertinent to any disease control programme. If Eastern Africa is to work towards control of foot-and-mouth disease (FMD) using the Progressive Control Pathway for FMD (PCP-FMD) as a tool, then the capacity of national reference laboratories (NRLs) mandated to diagnose FMD should match this task. This study assessed the laboratory capacity of 14 NRLs of the Eastern Africa Region Laboratory Network member countries using a semi-structured questionnaire and retrospective data from the World Reference Laboratory for FMD annual reports and Genbank® through National Centre for Biotechnology Information for the period 2006-2010. RESULTS: The questionnaire response rate was 13/14 (93%). Twelve out of the 13 countries/regions had experienced at least one outbreak in the relevant five year period. Only two countries (Ethiopia and Kenya) had laboratories at biosecurity level 3 and only three (Ethiopia, Kenya and Sudan) had identified FMD virus serotypes for all reported outbreaks. Based on their own country/region assessment, 12/13 of these countries /regions were below stage 3 of the PCP-FMD. Quarantine (77%) and vaccination (54%) were the major FMD control strategies employed. The majority (12/13) of the NRLs used serological techniques to diagnose FMD, seven used antigen ELISA and three of these (25%) also used molecular techniques which were the tests most frequently requested from collaborating laboratories by the majority (69%) of the NRLs. Only 4/13 (31%) participated in proficiency testing for FMD. Four (31%) laboratories had no quality management systems (QMS) in place and where QMS existed it was still deficient, thus, none of the laboratories had achieved accreditation for FMD diagnosis. CONCLUSIONS: This study indicates that FMD diagnostic capacity in Eastern Africa is still inadequate and largely depends on antigen and antibody ELISAs techniques undertaken by the NRLs. Hence, for the region to progress on the PCP-FMD, there is need to: implement regional control measures, improve the serological diagnostic test performance and laboratory capacity of the NRLs (including training of personnel as well as upgrading of equipment and methods, especially strengthening the molecular diagnostic capacity), and to establish a regional reference laboratory to enforce QMS and characterization of FMD virus containing samples.


Assuntos
Febre Aftosa/diagnóstico , Laboratórios , África Oriental/epidemiologia , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Laboratórios/normas , Laboratórios/estatística & dados numéricos , Inquéritos e Questionários
8.
PLoS One ; 18(3): e0269662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952433

RESUMO

High land areas in Uganda are suitable for the farming of Artemisia annua. However, harvested A. annua from these areas contain varying concentrations of antimalarial components. This may be attributed to variation in soil properties which affect vegetative growth characters, yield and active compounds of A. annua. Thus, bacterial composition and physiochemical properties of soil from Kabale and Kabarole high land areas where A. annua is grown were studied. The study objective was to determine the diversity of bacterial community in the rhizosphere and bulk soil of A. annua grown in highlands of Uganda. Composition of bacterial community was analyzed by amplicon sequencing of 16S rRNA genes on an Illumina Miseq platform. A total of 1,420,688 read counts was obtained and clustered into 163,493 Operational Taxonomic Units ((OTU). Kabarole highland had more OTUs (87,229) than Kabale (76,264). The phylum Proteobacteria (34.2%) was the most prevalent followed by Acidobacteria (17.3%) and Actinobacteria (15.5%). The bacteria community in the two highlands significantly differed (p <0.05) among all phyla except Proteobacteria. The main genera in bulk soil were povalibacter, brevitalea, nocardioides, stenotrophobacter, gaiella and solirubrobacter. Sphingomonas, ramlibacter paludibaculum and pseudarthrobacter were the main genera in A. annua rhizospheric soil.


Assuntos
Artemisia annua , Solo , Solo/química , Rizosfera , RNA Ribossômico 16S/genética , Uganda , Bactérias/genética , Proteobactérias/genética , Acidobacteria/genética , Microbiologia do Solo
9.
Transbound Emerg Dis ; 69(5): e1526-e1540, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35179830

RESUMO

Livestock trading through live animal markets are potential pathways for the introduction and spread of economically important pathogens like the African swine fever virus (ASFV) to new areas in several countries. Due to the high demand for live pigs in Nigeria both for restocking and slaughter, live pigs are sold at designated live pig markets (LPM) in the country. This involves movement of pigs over long distances. Despite, reports of ASF outbreaks following restocking of pigs bought from LPMs, there is paucity of information on the role of LPMs in the epidemiology of ASF. In this study, data and pig samples (whole blood, sera, tissue) were collected from 4 selected LPMs in Nigeria (Dawaki, Katsit, Numan and Pandam) between 2019 and 2020. Samples were analysed by polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Four genes of ASFV positive samples were characterized to identify the circulating genotypes. Results revealed trade activities involving transportation of pigs from these selected markets to 42 major cities and towns in thirteen (13) States of Nigeria. PCR results revealed an overall ASF prevalence of 10.77% (66/613). ASFV was confirmed by PCR in all the selected LPMs with a prevalence rate of 3.13%-23.81%. The phylogeny revealed genotype I and serogroup 4 based on the p72 protein that encodes the B646L gene and the EP402R gene encoding the CD2V. While sequence analysis of CVR of B602L gene revealed 8 tetrameric repeats variants, six of which have never been reported in Nigeria. Analysis of sera samples recorded a seroprevalence of 6.9% (16/217) within the study period. Findings from this study show that LPM are hotspots and channels for transmission and continuous spread of ASFV in Nigeria. Therefore, for ASF to be controlled in Nigeria, disease surveillance and regulation at LPMs are critical.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Vírus da Febre Suína Africana/genética , Animais , Surtos de Doenças/veterinária , Genótipo , Nigéria/epidemiologia , Filogenia , Estudos Soroepidemiológicos , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia
10.
Microbiol Resour Announc ; 10(26): e0035021, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34197187

RESUMO

A confirmed African swine fever (ASF) outbreak in Nigeria was further investigated by partial sequencing of the B464L and E183L genes of ASF virus (ASFV). Results revealed the first-time presence of ASFV genotype II in Nigeria and West Africa. This finding has serious implications for control measures and food security.

11.
BMC Evol Biol ; 10: 371, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118525

RESUMO

BACKGROUND: In East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007. RESULTS: The VP1 coding sequence of 11 serotype SAT 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania. CONCLUSIONS: Our results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa and highlight the importance of a regional approach to trans-boundary animal disease control in order to monitor circulating strains and apply appropriate vaccines.


Assuntos
Evolução Molecular , Vírus da Febre Aftosa/genética , Filogeografia , África Oriental , África Austral , Teorema de Bayes , Proteínas do Capsídeo/genética , Vírus da Febre Aftosa/classificação , RNA Viral/genética , Seleção Genética , Análise de Sequência de RNA
12.
Virol J ; 7: 199, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20731826

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is endemic in East Africa with the majority of the reported outbreaks attributed to serotype O virus. In this study, phylogenetic analyses of the polyprotein coding region of serotype O FMD viruses from Kenya and Uganda has been undertaken to infer evolutionary relationships and processes responsible for the generation and maintenance of diversity within this serotype. FMD virus RNA was obtained from six samples following virus isolation in cell culture and in one case by direct extraction from an oropharyngeal sample. Following RT-PCR, the single long open reading frame, encoding the polyprotein, was sequenced. RESULTS: Phylogenetic comparisons of the VP1 coding region showed that the recent East African viruses belong to one lineage within the EA-2 topotype while an older Kenyan strain, K/52/1992 is a representative of the topotype EA-1. Evolutionary relationships between the coding regions for the leader protease (L), the capsid region and almost the entire coding region are monophyletic except for the K/52/1992 which is distinct. Furthermore, phylogenetic relationships for the P2 and P3 regions suggest that the K/52/1992 is a probable recombinant between serotypes A and O. A bootscan analysis of K/52/1992 with East African FMD serotype A viruses (A21/KEN/1964 and A23/KEN/1965) and serotype O viral isolate (K/117/1999) revealed that the P2 region is probably derived from a serotype A strain while the P3 region appears to be a mosaic derived from both serotypes A and O. CONCLUSIONS: Sequences of the VP1 coding region from recent serotype O FMDVs from Kenya and Uganda are all representatives of a specific East African lineage (topotype EA-2), a probable indication that hardly any FMD introductions of this serotype have occurred from outside the region in the recent past. Furthermore, evidence for interserotypic recombination, within the non-structural protein coding regions, between FMDVs of serotypes A and O has been obtained. In addition to characterization using the VP1 coding region, analyses involving the non-structural protein coding regions should be performed in order to identify evolutionary processes shaping FMD viral populations.


Assuntos
Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/genética , Filogenia , Polimorfismo Genético , Poliproteínas/genética , RNA Viral/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Análise por Conglomerados , Cricetinae , Evolução Molecular , Vírus da Febre Aftosa/isolamento & purificação , Quênia , Dados de Sequência Molecular , Análise de Sequência de DNA , Uganda , Cultura de Vírus
13.
BMC Vet Res ; 6: 54, 2010 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-21143994

RESUMO

BACKGROUND: To study the role of African buffalos (Syncerus caffer) in the maintenance of foot-and-mouth disease in Uganda, serum samples were collected from 207 African buffalos, 21 impalas (Aepyceros melampus), 1 giraffe (Giraffa camelopardalis), 1 common eland (Taurotragus oryx), 7 hartebeests (Alcelaphus buselaphus) and 5 waterbucks (Kobus ellipsiprymnus) from four major National Parks in Uganda between 2005 and 2008. Serum samples were screened to detect antibodies against foot-and-mouth disease virus (FMDV) non-structural proteins (NSP) using the Ceditest® FMDV NS ELISA. Solid Phase Blocking ELISAs (SPBE) were used to determine the serotype-specificity of antibodies against the seven serotypes of FMDV among the positive samples. Virus isolation and sequencing were undertaken to identify circulating viruses and determine relatedness between them. RESULTS: Among the buffalo samples tested, 85% (95% CI = 80-90%) were positive for antibodies against FMDV non-structural proteins while one hartebeest sample out of seven (14.3%; 95% CI = -11.6-40.2%) was the only positive from 35 other wildlife samples from a variety of different species. In the buffalo, high serotype-specific antibody titres (≥ 80) were found against serotypes O (7/27 samples), SAT 1 (23/29 samples), SAT 2 (18/32 samples) and SAT 3 (16/30 samples). Among the samples titrated for antibodies against the four serotypes O, SAT 1, SAT 2 and SAT 3, 17/22 (77%; CI = 59.4-94.6%) had high titres against at least two serotypes.FMDV isolates of serotypes SAT 1 (1 sample) and SAT 2 (2 samples) were obtained from buffalo probang samples collected in Queen Elizabeth National Park (QENP) in 2007. Sequence analysis and comparison of VP1 coding sequences showed that the SAT 1 isolate belonged to topotype IV while the SAT 2 isolates belonged to different lineages within the East African topotype X. CONCLUSIONS: Consistent detection of high antibody titres in buffalos supports the view that African buffalos play an important role in the maintenance of FMDV infection within National Parks in Uganda. Both SAT 1 and SAT 2 viruses were isolated, and serological data indicate that it is also likely that FMDV serotypes O and SAT 3 may be present in the buffalo population. Detailed studies should be undertaken to define further the role of wildlife in the epidemiology of FMDV in East Africa.


Assuntos
Búfalos , Reservatórios de Doenças/veterinária , Febre Aftosa/epidemiologia , Sequência de Aminoácidos , Animais , Antílopes/sangue , Anticorpos Antivirais/sangue , Búfalos/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/genética , Dados de Sequência Molecular , Filogenia , Sorotipagem , Uganda/epidemiologia
14.
Trop Anim Health Prod ; 42(7): 1547-59, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20526861

RESUMO

Patterns of outbreaks of foot-and-mouth disease (FMD) in Uganda were elucidated from spatial and temporal retrospective data retrieved from monthly reports from District Veterinary Officers (DVOs) to the central administration for the years spanning 2001-2008. An assessment of perceived FMD occurrence, risk factors and the associated characteristics was made based on semi-structured questionnaires administered to the DVOs. During this period, a total of 311 FMD outbreaks were reported in 56 (70%) out of Uganda's 80 districts. The number of reported FMD outbreaks changed over time and by geographical regions. Occurrence of FMD was significantly associated with the dry season months (p = 0.0346), the time when animals movements are more frequent. The average number of FMD outbreaks was higher for some sub-counties adjacent to national parks than for other sub-counties, whilst proximity to international border only seemed to play a role at the southern border. DVOs believed that the major risk factor for FMD outbreaks was animal movements (odds ratio OR 50.8, confidence interval CI 17.8-144.6) and that most outbreaks were caused by introduction of sick animals.


Assuntos
Febre Aftosa/epidemiologia , Criação de Animais Domésticos , Migração Animal , Animais , Animais Selvagens/microbiologia , Surtos de Doenças/veterinária , Febre Aftosa/etiologia , Geografia , Conhecimentos, Atitudes e Prática em Saúde , Gado/microbiologia , Fatores de Risco , Estações do Ano , Uganda/epidemiologia
15.
J Hered ; 99(5): 443-52, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18477589

RESUMO

We investigated population genetic structure and regional differentiation among African savannah elephants in Kenya using mitochondrial and microsatellite markers. We observed mitochondrial DNA (mtDNA) nucleotide diversity of 1.68% and microsatellite variation in terms of average number of alleles, expected and observed heterozygosities in the total study population of 10.20, 0.75, and 0.69, respectively. Hierarchical analysis of molecular variance of mtDNA variation revealed significant differentiation among the 3 geographical regions studied (F(CT) = 0.264; P < 0.05) and a relatively lower differentiation among populations within regions (F(SC) = 0.218; P < 0.0001). Microsatellite variation significantly differentiated among populations within regions (F(SC) = 0.019; P < 0.0001) but not at the regional levels (F(CT) = 0.000; P > 0.500). We attribute the high differentiation at the mitochondrial genome to the matrilineal social structure of elephant populations, female natal philopatry, and probably ancient vicariance. Lack of significant regional differentiation at the nuclear loci vis-a-vis strong differences at mtDNA loci between regions is likely the effect of subsequent homogenization through male-mediated gene flow. Our results depicting 3 broad regional mtDNA groups and the observed population genetic differentiation as well as connectivity patterns should be incorporated in the planning of future management activities such as translocations.


Assuntos
Conservação dos Recursos Naturais , Elefantes/genética , Variação Genética , Animais , DNA Mitocondrial/genética , Feminino , Genética Populacional , Quênia , Masculino , Repetições de Microssatélites
16.
Artigo em Inglês | MEDLINE | ID: mdl-30533685

RESUMO

Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX.

17.
Front Genet ; 9: 385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333851

RESUMO

East Coast fever (ECF) is a fatal sickness affecting cattle populations of eastern, central, and southern Africa. The disease is transmitted by the tick Rhipicephalus appendiculatus, and caused by the protozoan Theileria parva parva, which invades host lymphocytes and promotes their clonal expansion. Importantly, indigenous cattle show tolerance to infection in ECF-endemically stable areas. Here, the putative genetic bases underlying ECF-tolerance were investigated using molecular data and epidemiological information from 823 indigenous cattle from Uganda. Vector distribution and host infection risk were estimated over the study area and subsequently tested as triggers of local adaptation by means of landscape genomics analysis. We identified 41 and seven candidate adaptive loci for tick resistance and infection tolerance, respectively. Among the genes associated with the candidate adaptive loci are PRKG1 and SLA2. PRKG1 was already described as associated with tick resistance in indigenous South African cattle, due to its role into inflammatory response. SLA2 is part of the regulatory pathways involved into lymphocytes' proliferation. Additionally, local ancestry analysis suggested the zebuine origin of the genomic region candidate for tick resistance.

18.
PLoS One ; 10(12): e0143605, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630483

RESUMO

With the emergence of analytical software for the inference of viral evolution, a number of studies have focused on estimating important parameters such as the substitution rate and the time to the most recent common ancestor (tMRCA) for rapidly evolving viruses. Coupled with an increasing abundance of sequence data sampled under widely different schemes, an effort to keep results consistent and comparable is needed. This study emphasizes commonly disregarded problems in the inference of evolutionary rates in viral sequence data when sampling is unevenly distributed on a temporal scale through a study of the foot-and-mouth (FMD) disease virus serotypes SAT 1 and SAT 2. Our study shows that clustered temporal sampling in phylogenetic analyses of FMD viruses will strongly bias the inferences of substitution rates and tMRCA because the inferred rates in such data sets reflect a rate closer to the mutation rate rather than the substitution rate. Estimating evolutionary parameters from viral sequences should be performed with due consideration of the differences in short-term and longer-term evolutionary processes occurring within sets of temporally sampled viruses, and studies should carefully consider how samples are combined.


Assuntos
Evolução Molecular , Vírus da Febre Aftosa/genética , África/epidemiologia , Animais , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/isolamento & purificação , Modelos Genéticos , Filogenia , RNA Viral/genética , Recombinação Genética , Seleção Genética , Alinhamento de Sequência , Sorotipagem , Fatores de Tempo
19.
PLoS One ; 10(2): e0114811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25664876

RESUMO

To investigate the foot-and-mouth disease virus (FMDV) serotypes circulating in Uganda's cattle population, both serological and virological analyses of samples from outbreaks that occurred during 2012-2013 were performed. Altogether, 79 sera and 60 oropharyngeal fluid (OP)/tissue/oral swab samples were collected from herds with reported FMD outbreaks in seven different Ugandan districts. Overall, 61/79 (77%) of the cattle sera were positive for antibodies against FMDV by PrioCHECK FMDV NS ELISA and solid phase blocking ELISA detected titres ≥ 80 for serotypes O, SAT 1, SAT 2 and SAT 3 in 41, 45, 30 and 45 of these 61 seropositive samples, respectively. Virus neutralisation tests detected the highest levels of neutralising antibodies (titres ≥ 45) against serotype O in the herds from Kween and Rakai districts, against SAT 1 in the herd from Nwoya district and against SAT 2 in the herds from Kiruhura, Isingiro and Ntungamo districts. The isolation of a SAT 2 FMDV from Isingiro was consistent with the detection of high levels of neutralising antibodies against SAT 2; sequencing (for the VP1 coding region) indicated that this virus belonged to lineage I within this serotype, like the currently used vaccine strain. From the Wakiso district 11 tissue/swab samples were collected; serotype A FMDV, genotype Africa (G-I), was isolated from the epithelial samples. This study shows that within a period of less than one year, FMD outbreaks in Uganda were caused by four different serotypes namely O, A, SAT 1 and SAT 2. Therefore, to enhance the control of FMD in Uganda, there is need for efficient and timely determination of outbreak virus strains/serotypes and vaccine matching. The value of incorporating serotype A antigen into the imported vaccines along with the current serotype O, SAT 1 and SAT 2 strains should be considered.


Assuntos
Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Surtos de Doenças/veterinária , Vírus da Febre Aftosa/genética , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Sequência de Aminoácidos , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Vírus da Febre Aftosa/classificação , Dados de Sequência Molecular , Testes de Neutralização/veterinária , Filogenia , RNA Viral , Sorogrupo , Uganda/epidemiologia
20.
Infect Genet Evol ; 21: 408-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24368254

RESUMO

Serotype A is the most genetically and antigenically diverse of the foot-and-mouth disease virus (FMDV) serotypes. Records of its occurrence in Kenya date back to 1952 and the antigenic diversity of the outbreak viruses in this region is reflected by the current use of two different vaccine strains (K5/1980 and K35/1980) and previous use of two other strains (K18/66 and K179/71). This study aimed at enhancing the understanding of the patterns of genetic variation of serotype A FMDV in Kenya. The complete VP1 coding region sequences of 38 field isolates, identified as serotype A FMDV, collected between 1964 and 2013 were determined. Coalescent-based methods were used to infer times of divergence of the virus strains and the evolutionary rates alongside 27 other serotype A FMDV sequences from Genbank and the World Reference Laboratory (WRL). This study represents the first comprehensive genetic analysis of serotype A FMDVs from Kenya. The study detected four previously defined genotypes/clusters (termed G-I, G-III, G-VII and G-VIII), within the Africa topotype, together with a fifth lineage that has apparently emerged from within G-I; these different lineages have each had a countrywide distribution. Genotypes G-III and G-VIII that were first isolated in 1964 are now apparently extinct; G-VII was last recorded in 2005, while G-I (including the new lineage) is currently in widespread circulation. High genetic diversity, widespread distribution and transboundary spread of serotype A FMDVs across the region of eastern Africa was apparent. Continuous surveillance for the virus, coupled to genetic and antigenic characterization is recommended for improved regional control strategies.


Assuntos
Vírus da Febre Aftosa/classificação , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Proteínas Virais/genética , Animais , Controle de Doenças Transmissíveis , Evolução Molecular , Febre Aftosa/epidemiologia , Variação Genética , Genótipo , Quênia/epidemiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa