Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 118(10): 2065-2076, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30003382

RESUMO

PURPOSE: The objective of this study was to examine the effects of repeated long-duration water immersions (WI)s at 1.35 atmospheres absolute (ATA) on neuromuscular performance in load bearing and non-load bearing muscle groups. METHODS: During a dive week (DW), fifteen well-trained male divers completed five consecutive 6-h resting dives with 18-h surface intervals while breathing compressed air at 1.35 ATA. Skeletal muscle performance assessments occurred immediately before and after each WI, and 24 and 72 h after the final WI. Exercise assessments included maximum voluntary isometric contraction (MVIC), maximal isokinetic (IK) contraction, maximum handgrip strength (MHG). Surface electromyography measured neuromuscular activation of the quadriceps, biceps brachii (BB), and brachioradialis. RESULTS: MVIC torque of knee extensors and BB decreased by 6% (p = 0.001) and 2% (p = 0.014), respectively, by WI 3. Maximal IK torque of knee extensors increased by 11 and 5% post-WI on WIs 3 and 5 (p < 0.001) with greater neuromuscular activation post-WI than pre-WI (p < 0.001). Maximum IK elbow flexion torque did not change throughout the DW with BB neuromuscular activation greater post-WI than pre-WI (p < 0.001). MHG force output was 4% greater post-WI than pre-WI (p < 0.001) with increased brachioradialis activation through 72-h post-WI (p < 0.001). All muscle performance metrics returned baseline levels by 72-h post-WI. CONCLUSION: Our findings indicate that repeated WIs caused noticeable decrements in neuromuscular activation and performance of load bearing muscles on WI 3 while full recovery was observed by 72-h post-WI.


Assuntos
Mergulho/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Adulto , Braço/fisiologia , Cotovelo/fisiologia , Articulação do Cotovelo/fisiologia , Eletromiografia/métodos , Força da Mão/fisiologia , Humanos , Contração Isométrica/fisiologia , Joelho/fisiologia , Articulação do Joelho/fisiologia , Masculino , Fadiga Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia , Fatores de Tempo , Torque , Água
2.
Front Physiol ; 10: 960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417421

RESUMO

Purpose: The main objective of this study was to investigate the physiological effects of repetitive diving-induced hyperoxic conditions at 1.35 atmospheres absolute (ATA) on neuromuscular strength performance. We hypothesized that following five days of consecutive, resting, long-duration (6 h or more) hyperoxic water immersions (WIs) neuromuscular strength performance would be reduced with a longer recovery time in comparison to previously reported normoxic WIs. Methods: Thirteen (n = 13) active male divers [31.3 ± 1.7 (24-43) years, mean ± years] completed five consecutive days of 6-h resting WIs with 18-h surface intervals while breathing 100% O2 (n = 13) at 1.35 ATA. Skeletal muscle performance assessments occurred immediately before and after each WI and 24 and 72 h after the final WI. Performance assessments included maximum voluntary isometric contraction (MVIC) and maximal isokinetic (IK) knee extensions and elbow flexions, and isometric maximum handgrip (MHG) strength. Neuromuscular activation was also measured on the quadriceps, biceps brachii, and brachioradialis via surface electromyography (sEMG). Results: MHG declined by 7.8% (p < 0.001) by WI 5 with performance returning to baseline by 24-h post-WI. Brachioradialis neuromuscular activation increased by 42% on WI 5. MVIC knee extension performance dropped by 4% (p = 0.001) on WI 3 with a 11% overall decrease in quadriceps neuromuscular activation. Maximal IK knee extension dropped by 3.3% on WI 5 with 9% drop in overall quadriceps activation during the same period. MVIC elbow flexion declined by 5.1% on WI 5 but returned to baseline by 72-h post-WI. Maximal IK elbow flexion performance dropped by 8.6% on WI 5 with a continual decline in biceps brachii neuromuscular activation of 24% on WI 5. Conclusion: Consecutive, resting, long-duration hyperoxic WIs reduce muscular performance in multiple muscle groups and alter neuromuscular activation after 3 days of WI with performance adaptations recovering toward baseline by the end of the WI 5. However, neuromuscular activation remains decreased and appears to last beyond the 72-h post-WI recovery period.

3.
Front Physiol ; 10: 858, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427978

RESUMO

PURPOSE: This study examined the effects of repeated long-duration hyperoxic water immersions (WIs) at 1.35 atmospheres absolute (ATA) on neuromuscular endurance performance. We hypothesized that over a 5-day period of consecutive, resting, long-duration hyperoxic WIs there would be a decrease to neuromuscular endurance performance and tissue oxygenation with the quadriceps muscle, but not with the forearm flexors. METHODS: Thirteen well-trained, male subjects completed five consecutive 6-h resting WIs with 18-h surface intervals during the dive week while breathing 100% oxygen at 1.35 ATA. We assessed skeletal muscle endurance performance before and after each WI, and 24 and 72 h after the final WI. Muscular endurance assessments included 40% maximal handgrip endurance (MHE) and 50-repetition maximal isokinetic (IK) knee extensions. Near-infrared spectroscopy (NIRS) was used to measure muscle oxidative capacity (MOC) of the vastus lateralis and localized muscle tissue oxygenation of the vastus lateralis and flexor carpi radialis. Simultaneously, we measured brachioradialis neuromuscular activation by surface electromyography (SEMG). RESULTS: MHE time-to-fatigue performance declined by 15% at WI 3 (p = 0.009) and by 17% on WI 5 (p = 0.002). Performance continued to decline by 22% at 24-h post-WI (p < 0.001) and by 12% on 72-h post-WI (p = 0.019). Fifty-repetition IK knee extension total work decreased by 5% (p = 0.002) on WI 3, and was further reduced by 7.5 and 12.3% (p = 0.032) at pre-WI 5 and 24-h post-WI, respectively. However, the rate of fatigue was 8 (p = 0.033) and 30% (p = 0.017) lower at WI 3 and 24-h post-WI when compared to WI 1, respectively, demonstrating the muscles were still fatigued from the previous hyperoxic WIs. We detected no significant limitations in oxygen off-loading kinetics during the exercise or MOC measurements. CONCLUSION: Repeated, resting, long-duration hyperoxic WIs caused significant reductions to muscular endurance but not to indirect measures of oxygen kinetics in load bearing and non-load bearing muscles.

4.
Front Physiol ; 9: 977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100879

RESUMO

Purpose: This study examined the effects of repeated long-duration water immersions (WI)s at 1.35 atmospheres absolute (ATA) on neuromuscular endurance performance. We hypothesized that, following 5 days of consecutive, resting, long-duration WIs, neuromuscular endurance performance would decrease. Methods: Fifteen well-trained, male subjects completed five consecutive 6-h resting WIs with 18-h surface intervals during the dive week while breathing compressed air at 1.35 ATA. Skeletal muscle endurance performance was assessed before and after each WI, and 24 and 72 h after the final WI. Muscular endurance assessments included 40% maximum handgrip endurance (MHE) and 50-repetition maximal isokinetic knee extensions. Near infrared spectroscopy was used to measure muscle oxidative capacity of the vastus lateralis and localized muscle tissue oxygenation of the vastus lateralis and flexor carpi radialis. Simultaneously, brachioradialis neuromuscular activation was measured by surface electromyography. Results: A 24.9% increase (p = 0.04) in the muscle oxidative capacity rate constant (k) occurred on WI 4 compared to baseline. No changes occurred in 40% MHE time to exhaustion or rate of fatigue or total work performed for the 50-repetition maximal isokinetic knee extension. The first quartile of deoxygenated hemoglobin concentration showed a 6 and 35% increase on WIs 3 and 5 (p = 0.026) with second quartile increases of 9 and 32% on WIs 3 and 5 (p = 0.049) during the 40% MHE testing when compared to WI 1. Conclusion: Our specific WI protocol resulted in no change to muscular endurance and oxygen kinetics in load bearing and non-load bearing muscles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa