Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502970

RESUMO

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Assuntos
Escherichia coli/metabolismo , Transdução de Sinais , Aerobiose , Anaerobiose , Sequência de Bases , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacologia , Oxigênio/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
3.
PLoS Genet ; 18(6): e1010270, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767559

RESUMO

Bacterial two-component systems (TCSs) often function through the detection of an extracytoplasmic stimulus and the transduction of a signal by a transmembrane sensory histidine kinase. This kinase then initiates a series of reversible phosphorylation modifications to regulate the activity of a cognate, cytoplasmic response regulator as a transcription factor. Several TCSs have been implicated in the regulation of cell cycle dynamics, cell envelope integrity, or cell wall development in Escherichia coli and other well-studied Gram-negative model organisms. However, many α-proteobacteria lack homologs to these regulators, so an understanding of how α-proteobacteria orchestrate extracytoplasmic events is lacking. In this work we identify an essential TCS, CenKR (Cell envelope Kinase and Regulator), in the α-proteobacterium Rhodobacter sphaeroides and show that modulation of its activity results in major morphological changes. Using genetic and biochemical approaches, we dissect the requirements for the phosphotransfer event between CenK and CenR, use this information to manipulate the activity of this TCS in vivo, and identify genes that are directly and indirectly controlled by CenKR in Rb. sphaeroides. Combining ChIP-seq and RNA-seq, we show that the CenKR TCS plays a direct role in maintenance of the cell envelope, regulates the expression of subunits of the Tol-Pal outer membrane division complex, and indirectly modulates the expression of peptidoglycan biosynthetic genes. CenKR represents the first TCS reported to directly control the expression of Tol-Pal machinery genes in Gram-negative bacteria, and we predict that homologs of this TCS serve a similar function in other closely related organisms. We propose that Rb. sphaeroides genes of unknown function that are directly regulated by CenKR play unknown roles in cell envelope biosynthesis, assembly, and/or remodeling in this and other α-proteobacteria.


Assuntos
Proteínas de Escherichia coli , Rhodobacter sphaeroides , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Peptidoglicano/genética , Peptidoglicano/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
4.
PLoS Pathog ; 18(2): e1010341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180278

RESUMO

The control of virulence gene regulator (CovR), also called caspsule synthesis regulator (CsrR), is critical to how the major human pathogen group A Streptococcus fine-tunes virulence factor production. CovR phosphorylation (CovR~P) levels are determined by its cognate sensor kinase CovS, and functional abrogating mutations in CovS can occur in invasive GAS isolates leading to hypervirulence. Presently, the mechanism of CovR-DNA binding specificity is unclear, and the impact of CovS inactivation on global CovR binding has not been assessed. Thus, we performed CovR chromatin immunoprecipitation sequencing (ChIP-seq) analysis in the emm1 strain MGAS2221 and its CovS kinase deficient derivative strain 2221-CovS-E281A. We identified that CovR bound in the promoter regions of nearly all virulence factor encoding genes in the CovR regulon. Additionally, direct CovR binding was observed for numerous genes encoding proteins involved in amino acid metabolism, but we found limited direct CovR binding to genes encoding other transcriptional regulators. The consensus sequence AATRANAAAARVABTAAA was present in the promoters of genes directly regulated by CovR, and mutations of highly conserved positions within this motif relieved CovR repression of the hasA and MGAS2221_0187 promoters. Analysis of strain 2221-CovS-E281A revealed that binding of CovR at repressed, but not activated, promoters is highly dependent on CovR~P state. CovR repressed virulence factor encoding genes could be grouped dependent on how CovR~P dependent variation in DNA binding correlated with gene transcript levels. Taken together, the data show that CovR repression of virulence factor encoding genes is primarily direct in nature, involves binding to a newly-identified DNA binding motif, and is relieved by CovS inactivation. These data provide new mechanistic insights into one of the most important bacterial virulence regulators and allow for subsequent focused investigations into how CovR-DNA interaction at directly controlled promoters impacts GAS pathogenesis.


Assuntos
Infecções Estreptocócicas , Fatores de Virulência , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Humanos , Proteínas Repressoras/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449329

RESUMO

Food insecurity is a major public health issue. Millions of households worldwide have intermittent and unpredictable access to food and this experience is associated with greater risk for a host of negative health outcomes. While food insecurity is a contemporary concern, we can understand its effects better if we acknowledge that there are ancient biological programs that evolved to respond to the experience of food scarcity and uncertainty, and they may be particularly sensitive to food insecurity during development. Support for this conjecture comes from common findings in several recent animal studies that have modeled insecurity by manipulating predictability of food access in various ways. Using different experimental paradigms in different species, these studies have shown that experience of insecure access to food can lead to changes in weight, motivation and cognition. Some of these studies account for changes in weight through changes in metabolism, while others observe increases in feeding and motivation to work for food. It has been proposed that weight gain is an adaptive response to the experience of food insecurity as 'insurance' in an uncertain future, while changes in motivation and cognition may reflect strategic adjustments in foraging behavior. Animal studies also offer the opportunity to make in-depth controlled studies of mechanisms and behavior. So far, there is evidence that the experience of food insecurity can impact metabolic efficiency, reproductive capacity and dopamine neuron synapses. Further work on behavior, the central and peripheral nervous system, the gut and liver, along with variation in age of exposure, will be needed to better understand the full body impacts of food insecurity at different stages of development.


Assuntos
Cognição , Motivação , Animais , Alimentos , Insegurança Alimentar , Biologia
6.
Pediatr Nephrol ; 39(9): 2691-2701, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38671228

RESUMO

BACKGROUND: Steroids, the mainstay of treatment for nephrotic syndrome in children, have multiple adverse effects including growth suppression. METHODS: Anthropometric measurements in children < 18 years enrolled in the Nephrotic Syndrome Study Network (NEPTUNE) were collected. The longitudinal association of medication exposure and nephrotic syndrome characteristics with height z-score and growth velocity was determined using adjusted Generalized Estimating Equation regression and linear regression. RESULTS: A total of 318 children (57.2% males) with a baseline age of 7.64 ± 5.04 years were analyzed. The cumulative steroid dose was 216.4 (IQR 61.5, 652.7) mg/kg (N = 233). Overall, height z-scores were not significantly different at the last follow-up compared to baseline (- 0.13 ± 1.21 vs. - 0.23 ± 1.71, p = 0.21). In models adjusted for age, sex, and eGFR, greater cumulative steroid exposure (ß - 7.5 × 10-6, CI - 1.2 × 10-5, - 3 × 10-6, p = 0.001) and incident cases of NS (vs. prevalent) (ß - 1.1, CI - 2.22, - 0.11, p = 0.03) were significantly associated with lower height z-scores over time. Rituximab exposure was associated with higher height z-scores (ß 0.16, CI 0.04, 0.29, p = 0.01) over time. CONCLUSION: Steroid dose was associated with lower height z-score, while rituximab use was associated with higher height z-score.


Assuntos
Estatura , Síndrome Nefrótica , Humanos , Síndrome Nefrótica/tratamento farmacológico , Masculino , Feminino , Criança , Pré-Escolar , Estatura/efeitos dos fármacos , Adolescente , Transtornos do Crescimento/etiologia , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/diagnóstico , Estudos Longitudinais , Glucocorticoides/administração & dosagem , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Rituximab/administração & dosagem , Rituximab/efeitos adversos
7.
Appetite ; 200: 107513, 2024 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795946

RESUMO

Food insecurity is a pervasive problem that impacts health and well-being across the lifespan. The human research linking food insecurity to poor metabolic and behavioral health outcomes is inherently correlational and suffers from a high degree of variability both between households and even within the same household over time. Further, food insecurity is impacted by societal and political factors that are largely out of the control of individuals, which narrows the range of intervention strategies. Animal models of food insecurity are being developed to address some of the barriers to mechanistic research. However, animal models are limited in their ability to consider some of the more complex societal elements of the human condition. We believe that understanding the role that food insecurity plays in ingestive behavior and chronic disease requires a truly translational approach, and that understanding the health impacts of this complex social phenomenon requires understanding both its psychological and physiological dimensions. This brief review will outline some key features of food insecurity, highlighting those that are amenable to investigation with controlled animal models and identifying areas where integrating animal and human studies can improve our understanding of the psychological burden and health impacts of food insecurity. In the interest of brevity, this review will largely focus on food insecurity in the United States, as the factors that contribute to food insecurity vary considerably across the globe.


Assuntos
Insegurança Alimentar , Humanos , Animais , Estados Unidos , Pesquisa Translacional Biomédica , Ciência Translacional Biomédica , Abastecimento de Alimentos
8.
J Bacteriol ; 205(12): e0018423, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38019006

RESUMO

IMPORTANCE: DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , DNA Helicases/genética , Reparo do DNA , Dano ao DNA , Proteínas de Bactérias/genética
9.
Ann Rheum Dis ; 82(5): 710-718, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36627169

RESUMO

OBJECTIVES: CHRFAM7A is a uniquely human fusion gene that functions as a dominant negative regulator of alpha 7 acetylcholine nicotinic receptor (α7nAChR) in vitro. This study determined the impact of CHRFAM7A on α7nAChR agonist responses, osteoarthritis (OA) severity and pain behaviours and investigated mechanisms. METHODS: Transgenic CHRFAM7A (TgCHRFAM7A) mice were used to determine the impact of CHRFAM7A on knee OA histology, pain severity in OA and other pain models, response to nAchR agonist and IL-1ß. Mouse and human cells were used for mechanistic studies. RESULTS: Transgenic (Tg) TgCHRFAM7A mice developed more severe structural damage and increased mechanical allodynia than wild type (WT) mice in the destabilisation of medial meniscus model of OA. This was associated with a decreased suppression of inflammation by α7nAchR agonist. TgCHRFAM7A mice displayed a higher basal sensitivity to pain stimuli and increased pain behaviour in the monoiodoacetate and formalin models. Dorsal root ganglia of TgCHRFAM7A mice showed increased macrophage infiltration and expression of the chemokine fractalkine and also had a compromised antinociceptive response to the α7nAchR agonist nicotine. Both native CHRNA7 and CHRFAM7A subunits were expressed in human joint tissues and the CHRFAM7A/CHRNA7 ratio was increased in OA cartilage. Human chondrocytes with two copies of CHRFAM7A had reduced anti-inflammatory responses to nicotine. CONCLUSION: CHRFAM7A is an aggravating factor for OA-associated inflammation and tissue damage and a novel genetic risk factor and therapeutic target for pain.


Assuntos
Osteoartrite do Joelho , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Humanos , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Inflamação/genética , Camundongos Transgênicos , Nicotina , Osteoartrite do Joelho/genética , Dor/genética
10.
Proc Natl Acad Sci U S A ; 117(47): 29658-29668, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168725

RESUMO

Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacterium Rhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription from R. sphaeroides rRNA promoters was unexpectedly weak, correlating with absence of -7T, the very highly conserved thymine found at the last position in -10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position -7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating that R. sphaeroides RNAP can utilize -7T when present. rRNA promoters were activated by purified R. sphaeroides CarD, a transcription factor found in many bacterial species but not in ß- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 native R. sphaeroides promoters tested in vitro that lacked -7T, whereas it had no effect on three of the four native promoters that contained -7T. Genome-wide bioinformatic analysis of promoters from R. sphaeroides and two other α-proteobacterial species indicated that 30 to 43% contained -7T, whereas 90 to 99% of promoters from non-α-proteobacteria contained -7T. Thus, promoters lacking -7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction in R. sphaeroides CarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas/genética , Rhodobacter sphaeroides/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa