Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 43(1): 86-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25602543

RESUMO

The European Union Water Framework Directive requires an integrated pollution prevention plan at the river basin level. Hydrological river basin modeling tools are therefore promising tools to support the quantification of pollution originating from different sources. A limited number of studies have reported on the use of these models to predict pollution fluxes in tile-drained basins. This study focused on evaluating different modeling tools and modeling concepts to quantify the flow and nitrate fluxes in the Odense River basin using DAISY-MIKE SHE (DMS) and the Soil and Water Assessment Tool (SWAT). The results show that SWAT accurately predicted flow for daily and monthly time steps, whereas simulation of nitrate fluxes were more accurate at a monthly time step. In comparison to the DMS model, which takes into account the uncertainty of soil hydraulic and slurry parameters, SWAT results for flow and nitrate fit well within the range of DMS simulated values in high-flow periods but were slightly lower in low-flow periods. Despite the similarities of simulated flow and nitrate fluxes at the basin outlet, the two models predicted very different separations into flow components (overland flow, tile drainage, and groundwater flow) as well as nitrate fluxes from flow components. It was concluded that the assessment on which the model provides a better representation of the reality in terms of flow paths should not only be based on standard statistical metrics for the entire river basin but also needs to consider additional data, field experiments, and opinions of field experts.

2.
Water Res ; 163: 114890, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351354

RESUMO

The effects of three commonly bioavailable nitrogen (N) sources (nitrate, ammonium, and urea) on regulating the growth and microcystins (MCs) production of Microcystis aeruginosa (M. aeruginosa) at environmentally relevant concentrations were investigated from a physiological perspective. Changes in amino acid quotas as well as the transcripts of target genes associated with N metabolism (ntcA, pipX and glnB) and toxin formation (mcyA and mcyD) were determined. Results indicated that increases in nitrate and urea concentrations enhanced M. aeruginosa growth, but high ammonium concentration (7 mg-N/L) suppressed the growth. The total intracellular MCs (IMCs) content was well correlated (0.65, p < 0.001) to amino acids (the sum of methionine, leucine, serine, alanine, arginine, glutamic acid, and aspartic acid) associated with MCs production. Ammonium favors amino acid synthesis in M. aeruginosa, thus cells grown under high concentrations of ammonium (7 mg-N/L) had sufficient precursors for MCs production, which might lead to higher IMCs. Both high and low ammonium concentration resulted in high total extracellular MCs (EMCs) level in water, despite of their different mechanisms. These results indicated that mitigation of nitrogen in eutrophic waters should be very cautious of unexpected risks, as the reduction of ammonium may have the risk of stimulating M. aeruginosa growth or increasing EMCs levels.


Assuntos
Compostos de Amônio , Microcystis , Microcistinas , Nitrogênio , Ureia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa