Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Biochem Biophys Res Commun ; 711: 149916, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38613866

RESUMO

ßIV-spectrin is a membrane-associated cytoskeletal protein that maintains the structural stability of cell membranes and integral proteins such as ion channels and transporters. Its biological functions are best characterized in the brain and heart, although recently we discovered a fundamental new role in the vascular system. Using cellular and genetic mouse models, we reported that ßIV-spectrin acts as a critical regulator of developmental and tumor-associated angiogenesis. ßIV-spectrin was shown to selectively express in proliferating endothelial cells (EC) and suppress VEGF/VEGFR2 signaling by enhancing receptor internalization and degradation. Here we examined how these events impact the downstream kinase signaling cascades and target substrates. Based on quantitative phosphoproteomics, we found that ßIV-spectrin significantly affects the phosphorylation of epigenetic regulatory enzymes in the nucleus, among which DNA methyltransferase 1 (DNMT1) was determined as a top substrate. Biochemical and immunofluorescence results showed that ßIV-spectrin inhibits DNMT1 function by activating ERK/MAPK, which in turn phosphorylates DNMT1 at S717 to impede its nuclear localization. Given that DNMT1 controls the DNA methylation patterns genome-wide, and is crucial for vascular development, our findings suggest that epigenetic regulation is a key mechanism by which ßIV-spectrin suppresses angiogenesis.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Sistema de Sinalização das MAP Quinases , Proteômica , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Proteômica/métodos , Camundongos , Fosforilação , Humanos , Neovascularização Fisiológica , Espectrina/metabolismo , Espectrina/genética , Fosfoproteínas/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Angiogênese
2.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360757

RESUMO

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Assuntos
Glicosaminoglicanos , Neoplasias Ovarianas , Humanos , Feminino , Glicosaminoglicanos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Heparitina Sulfato/metabolismo
3.
Gynecol Oncol ; 185: 8-16, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342006

RESUMO

OBJECTIVE: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. METHODS: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. RESULTS: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. CONCLUSIONS: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.


Assuntos
Glutationa Peroxidase , Fator 15 de Diferenciação de Crescimento , Neoplasias Ovarianas , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/biossíntese , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes
4.
Mol Cell ; 62(4): 520-31, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27184078

RESUMO

Smads are nuclear-shuttling transcriptional mediators of transforming growth factor-ß (TGF-ß) signaling. Although their essential nuclear roles in gene regulation during development and carcinogenesis are well established, whether they have important cytoplasmic functions remains unclear. Here we report that Smad2 is a critical determinant of mitochondrial dynamics. We identified mitofusin2 (MFN2) and Rab and Ras Interactor 1 (RIN1) as new Smad2 binding partners required for mitochondrial fusion. Unlike TGF-ß-induced Smad2/3 transcriptional responses underlying mitochondrial fragmentation and apoptosis, inactive cytoplasmic Smad2 rapidly promotes mitochondrial fusion by recruiting RIN1 into a complex with MFN2. We demonstrate that Smad2 is a key scaffold, allowing RIN1 to act as a GTP exchange factor for MFN2-GTPase activation to promote mitochondrial ATP synthesis and suppress superoxide production. These results reveal functional implications between Smads and mitochondrial dysfunction in cancer and metabolic and neurodegenerative disorders.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteína Smad2/metabolismo , Células A549 , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Metabolismo Energético , GTP Fosfo-Hidrolases/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Proteína Smad2/genética , Superóxidos/metabolismo , Transfecção
5.
Semin Cancer Biol ; 86(Pt 2): 709-719, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35259492

RESUMO

The ascites ecosystem in ovarian cancer is inhabited by complex cell types and is bathed in an environment rich in cytokines, chemokines, and growth factors that directly and indirectly impact metabolism of cancer cells and tumor associated cells. This milieu of malignant ascites, provides a 'rich' environment for the disease to thrive, contributing to every aspect of advanced ovarian cancer, a devastating gynecological cancer with a significant gap in targeted therapeutics. In this perspective we focus our discussions on the 'acellular' constituents of this liquid malignant tumor microenvironment, and how they influence metabolic pathways. Growth factors, chemokines and cytokines are known modulators of metabolism and have been shown to impact nutrient uptake and metabolic flexibility of tumors, yet few studies have explored how their enrichment in malignant ascites of ovarian cancer patients contributes to the metabolic requirements of ascites-resident cells. We focus here on TGF-ßs, VEGF and ILs, which are frequently elevated in ovarian cancer ascites and have all been described to have direct or indirect effects on metabolism, often through gene regulation of metabolic enzymes. We summarize what is known, describe gaps in knowledge, and provide examples from other tumor types to infer potential unexplored roles and mechanisms for ovarian cancer. The distribution and variation in acellular ascites components between patients poses both a challenge and opportunity to further understand how the ascites may contribute to disease heterogeneity. The review also highlights opportunities for studies on ascites-derived factors in regulating the ascites metabolic environment that could act as a unique signature in aiding clinical decisions in the future.


Assuntos
Ascite , Neoplasias Ovarianas , Feminino , Humanos , Ascite/etiologia , Ascite/metabolismo , Ascite/patologia , Ecossistema , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Citocinas/metabolismo , Microambiente Tumoral
6.
Am J Physiol Cell Physiol ; 324(2): C428-C437, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622068

RESUMO

Activins and inhibins are unique members of the transforming growth factor-ß (TGFß) family of growth factors, with the ability to exert autocrine, endocrine, and paracrine effects in a wide range of complex physiologic and pathologic processes. Although first isolated within the pituitary, emerging evidence suggests broader influence beyond reproductive development and function. Known roles of activin and inhibin in angiogenesis and immunity along with correlations between gene expression and cancer prognosis suggest potential roles in tumorigenesis. Here, we present a review of the current understanding of the biological role of activins and inhibins as it relates to ovarian cancers, summarizing the underlying signaling mechanisms and physiologic influence, followed by detailing their roles in cancer progression, diagnosis, and treatment.


Assuntos
Inibinas , Neoplasias Ovarianas , Humanos , Feminino , Inibinas/genética , Inibinas/metabolismo , Ativinas/genética , Ativinas/metabolismo , Neoplasias Ovarianas/genética , Transdução de Sinais , Sistema Endócrino/metabolismo
7.
J Biol Chem ; 298(9): 102297, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872017

RESUMO

Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-ß receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-ß or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-ß or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-ß pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.


Assuntos
Endoglina , Fator 2 de Diferenciação de Crescimento , Insulina , Neovascularização Patológica , Proteínas do Tecido Nervoso , Receptores de Fatores de Crescimento Transformadores beta , Animais , Humanos , Camundongos , Receptores de Activinas Tipo II/metabolismo , Chlorocebus aethiops , Células COS , Endoglina/genética , Endoglina/metabolismo , Fator 2 de Diferenciação de Crescimento/genética , Insulina/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases , Proteômica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
J Am Chem Soc ; 142(10): 4769-4783, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32073843

RESUMO

Photophysics tunability through alteration of framework aperture (metal-organic framework (MOF) = variable; guest = constant) was probed for the first time in comparison with previously explored concepts (MOF = constant; guest = variable). In particular, analysis of the confinement effect on a photophysical response of integrated 5-(3-chlorobenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one (Cl-BI) chromophore allowed us to establish a photophysics-aperture relationship. To shed light on the observed correlation, the framework confined environment was replicated using a molecular cage, Pd6(TPT)4 (TPT = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine), thus allowing for utilization of crystallography, spectroscopy, and theoretical simulations to reveal the effect a confined space has on the chromophore's molecular conformation (including disruption of strong hydrogen bonding and novel conformer formation) and any associated changes on a photophysical response. Furthermore, the chosen Cl-oHBI@Pd6(TPT)4 (Cl-oHBI = 5-(5-chloro-2-hydroxybenzylidene)-2,3-dimethyl-3,5-dihydro-4H-imidazol-4-one, chromophore) system was applied as a tool for targeted cargo delivery of a chromophore to the confined space of DNA, which resulted in promotion of chromophore-DNA interactions through a well-established intercalation mechanism. Moreover, the developed principles were applied toward utilizing a HBI-based chromophore as a fluorescent probe on the example of macrophage cells. For the first time, suppression of non-radiative decay pathways of a chromophore was tested by anchoring the chromophore to a framework metal node, portending a potential avenue to develop an alternative to natural biomarkers. Overall, these studies are among the first attempts to demonstrate the unrevealed potential of a confined scaffold environment for tailoring a material's photophysical response.


Assuntos
DNA/química , Corantes Fluorescentes/química , Imidazóis/química , Estruturas Metalorgânicas/química , Triazinas/química , Corantes Fluorescentes/efeitos da radiação , Células HeLa , Humanos , Imidazóis/efeitos da radiação , Substâncias Intercalantes/química , Substâncias Intercalantes/efeitos da radiação , Luz , Conformação Molecular
9.
J Biol Chem ; 291(49): 25716-25728, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27784788

RESUMO

Hyperactive Wnt/ß-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/ß-catenin signaling vital. Transforming growth factor ß type III receptor (TßRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TßRIII, independent of its TGFß co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TßRIII suggesting that Wnt interactions with the TßRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TßRIII promote Wnt3a signaling. These studies identify a novel, dual role for TßRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.


Assuntos
Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Sulfatos de Condroitina/genética , Heparitina Sulfato/genética , Humanos , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Proteína Wnt3A/genética
10.
J Biol Chem ; 290(24): 14884-92, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25931117

RESUMO

Autophagy is the targeted degradation of proteins and organelles critical for homeostasis and cell survival. Transforming growth factor ß (TGF-ß) differentially regulates autophagy in a context-specific manner, although the precise intracellular mechanisms remain less clear. Importantly, how TGF-ß controls autophagic responses in endothelial cells (EC) during angiogenesis is unknown. Here we identified endoglin, an EC-specific TGF-ß co-receptor essential for angiogenesis, as a key determinant of autophagy. Among the two opposing TGF-ß Smad pathways in the EC system (Smad1/5/8 and Smad2/3), we found Smad2 as the major transcriptional regulator of autophagy that targets beclin1 (BECN1) gene expression. Smad2, but not Smad3, acts as a repressor upstream of the BECN1 promoter region. Overall, endoglin promotes autophagy by impeding Smad2 transcriptional repressor activity. Notably, increased beclin1 levels upon Smad2 knockdown directly correlated with enhanced autophagy during angiogenesis. Taken together, these results establish endoglin as a critical mediator of autophagy and demonstrate a new transcriptional mechanism by which Smad2 inhibits angiogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Endotélio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína Smad2/fisiologia , Animais , Sequência de Bases , Proteína Beclina-1 , Células Cultivadas , Imunoprecipitação da Cromatina , Primers do DNA , Endoglina , Endotélio/citologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad2/genética
11.
EMBO J ; 31(19): 3885-900, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22940691

RESUMO

Both the transforming growth factor ß (TGF-ß) and integrin signalling pathways have well-established roles in angiogenesis. However, how these pathways integrate to regulate angiogenesis is unknown. Here, we show that the extracellular matrix component, fibronectin, and its cellular receptor, α5ß1 integrin, specifically increase TGF-ß1- and BMP-9-induced Smad1/5/8 phosphorylation via the TGF-ß superfamily receptors endoglin and activin-like kinase-1 (ALK1). Fibronectin and α5ß1 integrin increase Smad1/5/8 signalling by promoting endoglin/ALK1 cell surface complex formation. In a reciprocal manner, TGF-ß1 activates α5ß1 integrin and downstream signalling to focal adhesion kinase (FAK) in an endoglin-dependent manner. α5ß1 integrin and endoglin form a complex on the cell surface and co-internalize, with their internalization regulating α5ß1 integrin activation and signalling. Functionally, endoglin-mediated fibronectin/α5ß1 integrin and TGF-ß pathway crosstalk alter the responses of endothelial cells to TGF-ß1, switching TGF-ß1 from a promoter to a suppressor of migration, inhibiting TGF-ß1-mediated apoptosis to promote capillary stability, and partially mediating developmental angiogenesis in vivo. These studies provide a novel mechanism for the regulation of TGF-ß superfamily signalling and endothelial function through crosstalk with integrin signalling pathways.


Assuntos
Antígenos CD/metabolismo , Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Receptores de Superfície Celular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Activinas Tipo II/metabolismo , Apoptose/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Endoglina , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/metabolismo , Humanos , Microvasos/metabolismo , Neovascularização Fisiológica/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo
12.
J Biol Chem ; 289(37): 25486-96, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25070888

RESUMO

Endoglin is a transforming growth factor ß (TGF-ß) co-receptor essential for angiogenesis and tumor vascularization. Endoglin modulates the crucial balance between pro- and anti-angiogenic signaling by activin receptor-like kinase (ALK) 1, 5, and TGF-ß type II (TßRII) receptors. Despite its established role in physiology and disease, the mechanism of endoglin down-regulation remains unknown. Here we report that the conserved juxtamembrane cytoplasmic tyrosine motif ((612)YIY(614)) is a critical determinant of angiogenesis. Src directly phosphorylates this motif to induce endoglin internalization and degradation via the lysosome. We identified epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as Src-activators that induce endoglin turnover following (612)YIY(614) phosphorylation. Interestingly, Src phosphorylation of endoglin-(612)YIY(614) was also an important process for receptor down-regulation by TRACON105 (TRC105), an endoglin-targeting antibody currently in clinical trials. The regulation of (612)YIY(614) phosphorylation was critical for angiogenesis, as both the phosphomimetic and unphosphorylatable mutants impaired endothelial functions including proliferation, migration, and capillary tube formation. Collectively, these findings establish Src and pro-angiogenic mitogens as critical mediators of endoglin stability and function.


Assuntos
Motivos de Aminoácidos/genética , Antígenos CD/genética , Neovascularização Fisiológica/genética , Receptores de Superfície Celular/genética , Quinases da Família src/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proliferação de Células/genética , Endoglina , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
13.
Biochem J ; 454(1): 79-89, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23750457

RESUMO

Cell adhesion and migration are tightly controlled by regulated changes in the actin cytoskeleton. Previously we reported that the TGFß (transforming growth factor ß) superfamily co-receptor, TßRIII (type III TGFß receptor; also known as ßglycan), regulates cell adhesion, migration and invasion, and suppresses cancer progression, in part, through activation of the small GTPase Cdc42 (cell division cycle 42), and Cdc42-dependent alterations to the actin cytoskeleton. In the present study we demonstrate that TßRIII specifically promotes filopodial formation and extension in MCF10A and HMEC (human mammary epithelial cell) mammary epithelial cells. Mechanistically, cell-surface TßRIII and Cdc42 co-localize to filopodial structures and co-complex in a ß-arrestin2-dependent, and a TßRI/TßRII-independent manner. The ß-arrestin2-mediated interaction between TßRIII and Cdc42 increases complex formation between the Cdc42 effectors IRSp53 with N-WASP (neuronal Wiskott-Aldrich syndrome protein) to increase filopodial formation. We demonstrate a function link between filopodial structures and epithelial cell adhesion as regulated by the TßRIII-Cdc42 interaction. The present studies identify TßRIII as a novel regulator of IRSp53/N-WASP via Cdc42 to regulate filopodial formation and cell adhesion.


Assuntos
Glândulas Mamárias Humanas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pseudópodes/fisiologia , Fator de Crescimento Transformador beta3/fisiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Transformada , Células Epiteliais/metabolismo , Humanos , Glândulas Mamárias Humanas/citologia , Ligação Proteica/fisiologia , Ratos
14.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352432

RESUMO

Objective: We previously reported that high expression of the extracellular glutathione peroxidase GPX3 is associated with poor patient outcome in ovarian serous adenocarcinomas, and that GPX3 protects ovarian cancer cells from oxidative stress in culture. Here we tested if GPX3 is necessary for tumor establishment in vivo and to identify novel downstream mediators of GPX3's pro-tumorigenic function. Methods: GPX3 was knocked-down in ID8 ovarian cancer cells by shRNA to test the role of GPX3 in tumor establishment using a syngeneic IP xenograft model. RNA sequencing analysis was carried out in OVCAR3 cells following shRNA-mediated GPX3 knock-down to identify GPX3-dependent gene expression signatures. Results: GPX3 knock-down abrogated clonogenicity and intraperitoneal tumor development in vivo, and the effects were dependent on the level of GPX3 knock-down. RNA sequencing showed that loss of GPX3 leads to decreased gene expression patterns related to pro-tumorigenic signaling pathways. Validation studies identified GDF15 as strongly dependent on GPX3. GDF15, a member of the TGF-ß growth factor family, has known oncogenic and immune modulatory activities. Similarly, GPX3 expression positively correlated with pro-tumor immune cell signatures, including regulatory T-cell and macrophage infiltration, and displayed significant correlation with PD-L1 expression. Conclusions: We show for the first time that tumor produced GPX3 is necessary for ovarian cancer growth in vivo and that it regulates expression of GDF15. The immune profile associated with GPX3 expression in serous ovarian tumors suggests that GPX3 may be an alternate marker of ovarian tumors susceptible to immune check-point inhibitors.

15.
Neoplasia ; 53: 101003, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38759377

RESUMO

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Assuntos
Retículo Endoplasmático , MAP Quinase Quinase Quinases , Microtúbulos , Transdução de Sinais , Microtúbulos/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Acetilação , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Acetiltransferases/metabolismo , Acetiltransferases/genética , Estresse do Retículo Endoplasmático , Camundongos , Proteínas dos Microtúbulos
16.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790404

RESUMO

Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.

17.
Mol Cancer Res ; 21(10): 1037-1049, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37342066

RESUMO

High-grade serous ovarian cancer (HGSOC) is a highly aggressive and lethal subtype of ovarian cancer. While most patients initially respond to standard-of-care treatment, the majority will eventually relapse and succumb to their disease. Despite significant advances in our understanding of this disease, the mechanisms that govern the distinctions between HGSOC with good and poor prognosis remain unclear. In this study, we implemented a proteogenomic approach to analyze gene expression, proteomic and phosphoproteomic profiles of HGSOC tumor samples to identify molecular pathways that distinguish HGSOC tumors relative to clinical outcome. Our analyses identify significant upregulation of hematopoietic cell kinase (HCK) expression and signaling in poor prognostic HGSOC patient samples. Analyses of independent gene expression datasets and IHC of patient samples confirmed increased HCK signaling in tumors relative to normal fallopian or ovarian samples and demonstrated aberrant expression in tumor epithelial cells. Consistent with the association between HCK expression and tumor aggressiveness in patient samples, in vitro phenotypic studies showed that HCK can, in part, promote cell proliferation, colony formation, and invasive capacity of cell lines. Mechanistically, HCK mediates these phenotypes, partly through CD44 and NOTCH3-dependent signaling, and inhibiting CD44 or NOTCH3 activity, either genetically or through gamma-secretase inhibitors, can revert HCK-driven phenotypes. IMPLICATIONS: Collectively, these studies establish that HCK acts as an oncogenic driver of HGSOC through aberrant activation of CD44 and NOTCH3 signaling and identifies this network as a potential therapeutic opportunity in a subset of patients with aggressive and recurrent HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Proteômica , Proteínas Proto-Oncogênicas c-hck , Recidiva Local de Neoplasia , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Cistadenocarcinoma Seroso/metabolismo , Linhagem Celular Tumoral , Receptores de Hialuronatos/genética , Receptor Notch3/genética
18.
Cancer Med ; 12(18): 18981-18987, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37680049

RESUMO

BACKGROUND: Tumor-associated angiogenesis mediates the growth and metastasis of most solid cancers. Targeted therapies of the VEGF pathways can effectively block these processes but often fail to provide lasting benefits due to acquired resistance and complications. RESULTS: Recently, we discovered ßIV -spectrin as a powerful regulator of angiogenesis and potential new target. We previously reported that ßIV -spectrin is dynamically expressed in endothelial cells (EC) to induce VEGFR2 protein turnover during development. Here, we explored how ßIV -spectrin influences the tumor vasculature using the murine B16 melanoma model and determined that loss of EC-specific ßIV -spectrin dramatically promotes tumor growth and metastasis. Intraperitoneally injected B16 cells formed larger tumors with increased tumor vessel density and greater propensity for metastatic spread particularly to the chest cavity and lung compared to control mice. These results support ßIV -spectrin as a key regulator of tumor angiogenesis and a viable vascular target in cancer.


Assuntos
Melanoma Experimental , Espectrina , Animais , Camundongos , Células Endoteliais/metabolismo , Melanoma Experimental/irrigação sanguínea , Neovascularização Patológica , Espectrina/metabolismo
19.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131821

RESUMO

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to numerous growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT pathway may be a key target in ER stress and dysfunction.

20.
Mol Biol Cell ; 34(7): ar72, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126382

RESUMO

ßIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for ßIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, ßIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing ßIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of ßIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce ßIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that ßIV-spectrin acts upstream of these pathways as loss of ßIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate ßIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.


Assuntos
Fator 2 de Diferenciação de Crescimento , Espectrina , Animais , Camundongos , Células Endoteliais/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Espectrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa