Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Carcinog ; 62(9): 1417-1427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37265438

RESUMO

Incessant ovulation is believed to be a potential cause of epithelial ovarian cancer (EOC). Our previous investigations have shown that insulin-like growth factor (IGF2) and hepatocyte growth factor (HGF) in the ovulatory follicular fluid (FF) contributed to the malignant transformation initiated by p53 mutations. Here we examined the individual and synergistic impacts of IGF2 and HGF on enhancing the malignant properties of high-grade serous carcinoma (HGSC), the most aggressive type of EOC, and its precursor lesion, serous tubal intraepithelial carcinoma (STIC). In a mouse xenograft co-injection model, we observed that FF co-injection induced tumorigenesis of STIC-mimicking cells, FE25. Co-injection with IGF2 or HGF partially recapitulated the tumorigenic effects of FF, but co-injection with both resulted in a higher tumorigenic rate than FF. We analyzed the different transformation phenotypes influenced by these FF growth signals through receptor inhibition. The IGF signal was necessary for clonogenicity, while the HGF signal played a crucial role in the migration and invasion of STIC and HGSC cells. Both signals were necessary for the malignant phenotype of anchoring-independent growth but had little impact on cell proliferation. The downstream signals responsible for these HGF activities were identified as the tyrosine-protein kinase Met (cMET)/mitogen-activated protein kinase and cMET/AKT pathways. Together with the previous finding that the FF-IGF2 could mediate clonogenicity and stemness activities via the IGF-1R/AKT/mammalian target of rapamycin and IGF-1R/AKT/NANOG pathways, respectively, this study demonstrated the cooperation of the FF-sourced IGF and HGF growth signals in the malignant transformation and progression of HGSC through both common and distinct signaling pathways. These findings help develop targeted prevention of HGSC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias das Tubas Uterinas , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Líquido Folicular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/genética , Células Epiteliais/metabolismo , Carcinogênese/patologia , Carcinoma Epitelial do Ovário/patologia , Cistadenocarcinoma Seroso/metabolismo , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/patologia , Transformação Celular Neoplásica/patologia , Mamíferos/metabolismo
2.
Arch Toxicol ; 97(2): 495-507, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36416909

RESUMO

Immunotoxicity has been an important topic in toxicology since inadvertent exposures to xenobiotics were found to alter immune functions in humans. While rodent toxicity tests can reveal some levels of immunotoxicity, alternative methods must be developed to identify the detailed mechanisms. In this study, a method of in vitro prediction of innate immune suppression by substances was developed using a genomics approach. The primary selection of immune suppressors was based on their ability to downregulate MCP-1, CCL3, TNF, IL-8, and IL-12p40 expression levels in lipopolysaccharide (LPS)-stimulated THP-1 cells. Among 11 substances classified as potent immune suppressors, six including dexamethasone, tacrolimus, tofacitinib, prednisolone, sodium lauryl sulfate, and benzoic acid were used to create a dataset by transcriptomics of chemical-treated THP-1 cells using bulk RNA sequencing. We selected genes that were significantly upregulated by suppressor treatment while filtering out genes also upregulated in LPS-treated THP-1 cells. We identified a 226-gene immunosuppressive gene set (ISG). Innate immune suppressor signature scores were calculated as the median expression of the ISG. In a validation dataset, the signature score predicted acyclovir, cyclosporine, and mercuric chloride as immune suppressors, while selecting genistein as a non-immune suppressor. Although more dataset integration is needed in the future, our results demonstrated the possibility and utility of a novel genomics-based approach, the transcriptome-based determination of innate immune suppressor (TDIS) assay, to evaluate innate immune suppression by different substances. This provides insight into the development of future alternative testing methods because it reflects a comprehensive genetic signature derived from multiple substances rather than one cytokine.


Assuntos
Tolerância Imunológica , Imunidade Inata , Testes de Toxicidade , Transcriptoma , Humanos , Citocinas/genética , Imunidade Inata/genética , Técnicas In Vitro , Lipopolissacarídeos , Células THP-1 , Testes de Toxicidade/métodos
3.
Gut ; 70(12): 2249-2260, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33558271

RESUMO

OBJECTIVE: Dysfunctional resolution of intestinal inflammation and altered mucosal healing are essential features in the pathogenesis of inflammatory bowel disease (IBD). Intestinal macrophages are vital in the process of inflammation resolution, but the mechanisms underlying their mucosal healing capacity remain elusive. DESIGN: We investigated the role of the prostaglandin E2 (PGE2) receptor PTGER4 on the differentiation of intestinal macrophages in patients with IBD and mouse models of intestinal inflammation. We studied mucosal healing and intestinal epithelial barrier regeneration in Csf1r-iCre Ptger4fl/fl mice during dextran sulfate sodium (DSS)-induced colitis. The effect of PTGER4+ macrophage secreted molecules was investigated on epithelial organoid differentiation. RESULTS: Here, we describe a subset of PTGER4-expressing intestinal macrophages with mucosal healing properties both in humans and mice. Csf1r-iCre Ptger4fl/fl mice showed defective mucosal healing and epithelial barrier regeneration in a model of DSS colitis. Mechanistically, an increased mucosal level of PGE2 triggers chemokine (C-X-C motif) ligand 1 (CXCL1) secretion in monocyte-derived PTGER4+ macrophages via mitogen-activated protein kinases (MAPKs). CXCL1 drives epithelial cell differentiation and proliferation from regenerating crypts during colitis. Specific therapeutic targeting of macrophages with liposomes loaded with an MAPK agonist augmented the production of CXCL1 in vivo in conditional macrophage PTGER4-deficient mice, restoring their defective epithelial regeneration and favouring mucosal healing. CONCLUSION: PTGER4+ intestinal macrophages are essential for supporting the intestinal stem cell niche and regeneration of the injured epithelium. Our results pave the way for the development of a new class of therapeutic targets to promote macrophage healing functions and favour remission in patients with IBD.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Ativação de Macrófagos , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Diferenciação Celular , Quimiocina CXCL1/metabolismo , Modelos Animais de Doenças , Camundongos , Regeneração , Transdução de Sinais
4.
Mod Pathol ; 33(1): 29-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558785

RESUMO

High-grade serous carcinoma is the most common and devastating type of ovarian cancer; its etiology, mechanism of malignant transformation, and origin remain controversial. Recent studies have identified secretory cells at the fimbria of the fallopian tube as the cell-of-origin of high-grade serous carcinoma, acquiring TP53 mutation, evolving to tubal precursor lesions, including "p53 signature" and serous tubal intraepithelial carcinoma, and metastasizing to the ovary as clinically evident ovarian cancer. The etiological mechanisms associated with known epidemiological risk factors, i.e., ovulation and retrograde menstruation, have also been suggested. Mutagens and transforming growth factors, such as reactive oxygen species and insulin-like growth factor axis proteins, as well as the apoptosis-rescuing protein hemoglobin are abundantly present in the ovulatory follicular fluid and peritoneum fluid, which bathes the fimbrial epithelium, and induces malignant transformation after repeated exposure. In accordance with the proposed cleansing effect of progesterone from studies on oral contraceptive use or term pregnancy, a recent study indicated that the p53-null tubal epithelial cells are selectively cleared by progesterone depending on its progesterone receptor. In this report, by analyzing different time effects of oral contraceptive use or pregnancy in the prevention of ovarian cancer and by aligning them with the carcinogenic and cleansing clearance concepts of ovulation and progesterone, as well as the fact of progressive loss of progesterone receptor during tubal transformation, we deduced the natural history of ovarian high-grade serous carcinoma. The natural history begins at the first ovulation and spans for more than 30 years, taking 10 years from the normal tubal epithelium to the "p53 signature" status, another 15 years to progesterone receptor negative serous tubal intraepithelial carcinoma, and a final 5+ years to high-grade serous carcinoma. The estimated natural history may help understand the pathogenesis of high-grade serous carcinoma and defines the window for early detection and chemoprevention.


Assuntos
Carcinogênese , Carcinoma Epitelial do Ovário/patologia , Cistadenocarcinoma Seroso/patologia , Ovulação/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Anticoncepcionais Orais Hormonais/farmacologia , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Feminino , Humanos , Gravidez , Progesterona/farmacologia
5.
Arch Gynecol Obstet ; 301(5): 1247-1255, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32221709

RESUMO

PURPOSE: This retrospective study compared the efficacy and survival of patients with cervical adenocarcinoma (IB2/IIA2; FIGO2009) treated with neoadjuvant chemotherapy before radical surgery (NACT + RS), neoadjuvant chemoradiation therapy before radical surgery (NACRT + RS), or primary radical surgery (RS). METHODS: Between January 2008 and November 2015, 91 patients diagnosed with stage IB2/IIA2 cervical adenocarcinoma were enrolled, including 29 patients who received RS, 24 patients who received NACT + RS, and 38 patients who received NACRT + RS. RESULTS: The characteristics of patients were balanced among the three groups, and the median follow-up time was 72 months. The 5 year disease-free survival (DFS) rate was 75.8% and the 5 year overall survival (OS) rate was 85.0%. Univariate analysis revealed that effectiveness of neoadjuvant treatment, tumor size, lymph node metastases, and depth of stromal invasion were the factors predicting recurrence and mortality. Multivariate Cox proportional analysis revealed that the occurrence of a lymph node metastasis was an independent prognostic factor of DFS (hazard ratio [HR] = 0.223; 95% confidence interval [CI]: 0.060-0.827) and OS (HR = 0.088; 95% CI: 0.017-0.470). On survival analysis of preoperative adjuvant chemotherapy and primary surgery, the 5 year OS (P = 0.010) and DFS (P = 0.016) rates for the NACRT + RS group were significantly lower than those for the RS group. CONCLUSION: Stage IB2/IIA2 cervical adenocarcinoma patients who received primary RS had a better DFS and OS than those who received preoperative NACRT. There was no significant difference when compared to the preoperative NACT group.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/cirurgia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/cirurgia , Quimiorradioterapia/métodos , Terapia Neoadjuvante/métodos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/cirurgia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Intervalo Livre de Doença , Feminino , Humanos , Histerectomia , Metástase Linfática , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Análise de Sobrevida , Taxa de Sobrevida , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/patologia
6.
J Immunol ; 197(10): 4101-4109, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742831

RESUMO

GM-CSF induces proinflammatory macrophages, but the underlying mechanisms have not been studied thus far. In this study, we investigated the mechanisms of how GM-CSF induces inflammatory macrophages. First, we observed that GM-CSF increased the extent of LPS-induced acute glycolysis in murine bone marrow-derived macrophages. This directly correlates with an inflammatory phenotype because glycolysis inhibition by 2-deoxyglucose abolished GM-CSF-mediated increase of TNF-α, IL-1ß, IL-6, and IL-12p70 synthesis upon LPS stimulation. Increased glycolytic capacity is due to de novo synthesis of glucose transporter (GLUT)-1, -3, and -4, as well as c-myc. Meanwhile, GM-CSF increased 3-hydroxy-3-methyl-glutaryl-CoA reductase, which is the rate-limiting enzyme of the mevalonate pathway. Inhibition of acute glycolysis or 3-hydroxy-3-methyl-glutaryl-CoA reductase abrogated the inflammatory effects of GM-CSF priming in macrophages. Finally, mice with inflamed colons exposed to dextran sodium sulfate containing GLUT-1high macrophages led to massive uptake of [18F]-fluorodeoxyglucose, but GM-CSF neutralization reduced the positron-emission tomography signal in the intestine and also decreased GLUT-1 expression in colonic macrophages. Collectively, our results reveal glycolysis and lipid metabolism created by GM-CSF as the underlying metabolic constructs for the function of inflammatory macrophages.


Assuntos
Glicólise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Metabolismo dos Lipídeos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Colo/citologia , Colo/imunologia , Colo/patologia , Citocinas/biossíntese , Desoxiglucose/farmacologia , Fluordesoxiglucose F18 , Genes myc/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Interleucina-1beta/biossíntese , Camundongos , Tomografia por Emissão de Pósitrons , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/genética , Fator de Necrose Tumoral alfa/biossíntese
7.
Mol Cell Proteomics ; 14(10): 2722-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26229149

RESUMO

Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Animais , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Microesferas , Fagocitose , Proteoma/metabolismo , Proteômica
8.
Eur J Immunol ; 45(9): 2661-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26118414

RESUMO

Macrophages have important functions in tissue homeostasis, but the exact mechanisms regarding wide spectrum of macrophage phenotype remain unresolved. In this study, we report that mouse bone marrow derived naïve macrophages produce prostaglandin E2 (PGE2 ) endogenously, resulting in anti-inflammatory gene expression upon differentiation induced by macrophage colony stimulating factor (M-CSF). Cyclooxygenase (COX) inhibition by indomethacin reduced endogenous PGE2 production of macrophages and subsequently reduced arg1, IL10 and Mrc1, YmI and FizzI gene expressions. Of note, PGE2 phosphorylates CREB via EP2 and EP4 receptor ligation, thereby transcriptionally increasing C/EBP-ß expression in BALB/c bone marrow derived macrophages. Activated CREB directly binds to the CREB-responsive element of the C/EBP-ß promoter, such that PGE2 ultimately reinforces arg1, IL10 and Mrc1 gene expression. Cyclic AMP activator forskolin also phosphorylated CREB and induced the C/EBP-ß cascade, but this was completely blocked by the PKA inhibitor, H89. Consequently, M-CSF grown macrophages inhibited T-cell proliferation but the inhibition ability was reduced when the COX is inhibited by indomethacin or macrophage C/EBP-ß expression was decreased by siRNA transduction. Our results collectively describe the molecular basis for homeostatic macrophage differentiation by endogenous PGE2 .


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Dinoprostona/biossíntese , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Arginase/genética , Arginase/imunologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colforsina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/imunologia , Feminino , Regulação da Expressão Gênica , Indometacina/farmacologia , Interleucina-10/genética , Interleucina-10/imunologia , Isoquinolinas/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Cultura Primária de Células , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores Imunológicos , Transdução de Sinais , Sulfonamidas/farmacologia
9.
J Biol Chem ; 289(9): 6225-35, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24421315

RESUMO

PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.


Assuntos
Apoptose , Linfocinas/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Proteína de Morte Celular Associada a bcl/metabolismo , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Linfocinas/genética , Macrófagos/patologia , Masculino , Neoplasias/genética , Neoplasias/fisiopatologia , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-akt , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estaurosporina/farmacologia , Proteína de Morte Celular Associada a bcl/genética
11.
Theranostics ; 14(2): 843-860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169569

RESUMO

Background: In recent years, there has been considerable interest in the therapeutic targeting of tumor-associated macrophages (TAMs) to modulate the tumor microenvironment (TME), resulting in antitumoral phenotypes. However, key mediators suitable for TAM-mediated remodeling of the TME remain poorly understood. Methods: In this study, we used single-cell RNA sequencing analyses to analyze the landscape of the TME modulated by TAMs in terms of a protumor microenvironment during early tumor development. Results: Our data revealed that the depletion of TAMs leads to a decreased epithelial-to-mesenchymal transition (EMT) signature in cancer cells and a distinct transcriptional state characterized by CD8+ T cell activation. Moreover, notable alterations in gene expression were observed upon the depletion of TAMs, identifying Galectin-1 (Gal-1) as a crucial molecular factor responsible for the observed effect. Gal-1 inhibition reversed immune suppression via the reinvigoration of CD8+ T cells, impairing tumor growth and potentiating immune checkpoint inhibitors in breast tumor models. Conclusion: These results provide comprehensive insights into TAM-mediated early tumor microenvironments and reveal immune evasion mechanisms that can be targeted by Gal-1 to induce antitumor immune responses.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor , Microambiente Tumoral , Galectina 1/genética , Galectina 1/metabolismo , Linfócitos T CD8-Positivos , Macrófagos/metabolismo , Imunidade
12.
Probiotics Antimicrob Proteins ; 16(2): 636-648, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37072632

RESUMO

The purpose of this study was to investigate the role of Lactobacillus rhamnosus GG (LGG) probiotics in radiation enteritis using in vivo mice. A total of 40 mice were randomly assigned to four groups: control, probiotics, radiotherapy (RT), and RT + probiotics. For the group of probiotics, 0.2 mL of solution that contained 1.0 × 108 colony-forming units (CFU) of LGG was used and orally administered daily until sacrifice. For RT, a single dose of 14 Gy was administered using a 6 mega-voltage photon beam to the abdominopelvic area. Mice were sacrifice at day 4 (S1) and day 7 (S2) after RT. Their jejunum, colon, and stool were collected. A multiplex cytokine assay and 16 s ribosomal RNA amplicon sequencing were then performed. Regarding cytokine concentrations in tissues, pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 and monocyte chemotactic protein-1, showed significantly decreased protein levels in colon tissues of the RT + probiotics group than in the RT alone group (all p < 0.05). As for comparing microbial abundance through alpha-diversity and beta-diversity, no significant differences were observed between the RT + probiotics and RT alone groups, except for an increase in alpha-diversity in the stool of the RT + probiotics group. Upon analysis of differential microbes based on treatment, the dominance of anti-inflammatory-related microbes, such as Porphyromonadaceae, Bacteroides acidifaciens, and Ruminococcus, was observed in the jejunum, colon, and stool of the RT + probiotics group. With regard to predicted metabolic pathway abundances, the pathways associated with anti-inflammatory processes, such as biosynthesis of pyrimidine nucleotides, peptidoglycans, tryptophan, adenosylcobalamin, and propionate, were differentially identified in the RT + probiotics group compared to the RT alone group. Protective effects of probiotics on radiation enteritis were potentially derived from dominant anti-inflammation-related microbes and metabolites.


Assuntos
Enterite , Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Animais , Citocinas/metabolismo , Enterite/etiologia , Enterite/terapia , Interleucina-6 , Anti-Inflamatórios
13.
Zebrafish ; 21(1): 53-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377344

RESUMO

Since its introduction as a model organism in the 1980s, the use of zebrafish (Danio rerio) in research has expanded worldwide. Despite its now widespread use in research, guidelines to safeguard the ethical treatment of zebrafish, particularly with regard to euthanasia and humane endpoint practices, remain inadequate. One well-recognized example is the use of excess tricaine methanesulfonate (MS-222) as a means to euthanize zebrafish, regardless of life stage. In this study, through nationwide expert elicitation, we provide a detailed account of zebrafish research practices within the Republic of Korea and the challenges of implementing appropriate methods for euthanasia as a humane endpoint, with many opting for hypothermic shock. We report a local expert consensus for establishing national guidelines to improve zebrafish welfare and good research practice. Suggestions and recommendations for national guidelines were offered. Taken together, our findings raise awareness broadly among zebrafish research practitioners in the field, offer an accurate account of the welfare and treatment of zebrafish in research within the Republic of Korea, and advocate for the development and implementation of national guidelines. As such, our study is useful as a model to adopt the expert elicitation approach to investigate, quantify, and address welfare concerns in zebrafish research, and to establish best practice guidelines.


Assuntos
Anestésicos , Perciformes , Animais , Peixe-Zebra , Eutanásia Animal/métodos , República da Coreia
14.
Exp Mol Med ; 55(9): 1945-1954, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653035

RESUMO

Macrophages are essential innate immune cells found throughout the body that have protective and pathogenic functions in many diseases. When activated, macrophages can mediate the phagocytosis of dangerous cells or materials and participate in effective tissue regeneration by providing growth factors and anti-inflammatory molecules. Ex vivo-generated macrophages have thus been used in clinical trials as cell-based therapies, and based on their intrinsic characteristics, they outperformed stem cells within specific target diseases. In addition to the old methods of generating naïve or M2 primed macrophages, the recently developed chimeric antigen receptor-macrophages revealed the potential of genetically engineered macrophages for cell therapy. Here, we review the current developmental status of macrophage-based cell therapy. The findings of important clinical and preclinical trials are updated, and patent status is investigated. Additionally, we discuss the limitations and future directions of macrophage-based cell therapy, which will help broaden the potential utility and clinical applications of macrophages.


Assuntos
Macrófagos , Fagocitose , Macrófagos/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Anti-Inflamatórios/farmacologia
15.
Microbes Infect ; 25(7): 105139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37085043

RESUMO

Increasing evidence indicates a strong interaction between cellular metabolism and innate macrophage immunity. Here, we show that the intracellular replication of Mycobacteroides massiliense in macrophages depends on host pyruvate dehydrogenase kinase (PDK) activity. Infection with M. massiliense induced a metabolic switch in macrophages by increasing glycolysis and decreasing oxidative phosphorylation. Treatment with dichloroacetate (DCA), a PDK inhibitor, converts this switch in M. massiliense-infected macrophages and restricts intracellular bacterial replication. Mechanistically, DCA resulted in AMPKα1 activation via increased AMP/ATP ratio, consequently inducing autophagy to constrain bacterial proliferation in the phagolysosome. This study suggests that the pharmacological inhibition of PDK could be a strategy for host-directed therapy to control virulent M. massiliense infections.


Assuntos
Glicólise , Proteínas Serina-Treonina Quinases , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Macrófagos/metabolismo , Autofagia
16.
Tissue Eng Regen Med ; 20(6): 905-919, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531072

RESUMO

BACKGROUND: Adipose-derived stem cells (ADSCs) exert immunomodulatory effects in the treatment of transplant rejection. This study aimed to evaluate the effects of ADSCs on the skin graft survival in a human-to-rat xenograft transplantation model and to compare single and multiple injections of ADSCs. METHODS: Full-thickness human skin xenografts were transplanted into the backs of Sprague-Dawley rats. The rats were injected subcutaneously on postoperative days 0, 3, and 5. The injections were as follows: triple injections of phosphate-buffered saline (PBS group), a single injection of ADSCs and double injections of PBS (ADSC × 1 group), and triple injections of ADSCs (ADSC × 3 group). The immunomodulatory effects of ADSCs on human skin xenografts were assessed. RESULTS: Triple injections of ADSCs considerably delayed cell-mediated xenograft rejection compared with the PBS and ADSC × 1 groups. The vascularization and collagen type 1-3 ratios in the ADSC × 3 group were significantly higher than those in the other groups. In addition, intragraft infiltration of CD3-, CD4-, CD8-, and CD68-positive cells was reduced in the ADSC × 3 group. Furthermore, in the ADSC × 3 group, the expression levels of proinflammatory cytokine interferon-gamma (IFN-γ) were decreased and immunosuppressive prostaglandin E synthase (PGES) was increased in the xenograft and lymph node samples. CONCLUSION: This study presented that triple injections of ADSCs appeared to be superior to a single injection in suppressing cell-mediated xenograft rejection. The immunomodulatory effects of ADSCs are associated with the downregulation of IFN-γ and upregulation of PGES in skin xenografts and lymph nodes.


Assuntos
Tecido Adiposo , Sobrevivência de Enxerto , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Transplante Heterólogo , Xenoenxertos , Células-Tronco
17.
Front Microbiol ; 13: 845795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495698

RESUMO

Re-emerging viral threats have continued to challenge the medical and public health systems. It has become clear that a significant number of severe viral infection cases are due to an overreaction of the immune system, which leads to hyperinflammation. In this study, we aimed to demonstrate the therapeutic efficacy of the dexamethasone nanomedicine in controlling the symptoms of influenza virus infection. We found that the A/Wisconsin/WSLH34939/2009 (H1N1) infection induced severe pneumonia in mice with a death rate of 80%, accompanied by significant epithelial cell damage, infiltration of immune cells, and accumulation of pro-inflammatory cytokines in the airway space. Moreover, the intranasal delivery of liposomal dexamethasone during disease progression reduced the death rate by 20%. It also significantly reduced the protein level of tumor necrosis factor-alpha (TNFα), interleukin-1ß (IL-1ß), IL-6, and the C-X-C motif chemokine ligand 2 (CXCL2) as well as the number of infiltrated immune cells in the bronchoalveolar lavage fluids as compared to the control and free dexamethasone. The liposomal dexamethasone was mainly distributed into the monocyte/macrophages as a major cell population for inducing the cytokine storm in the lungs. Taken together, the intranasal delivery of liposomal dexamethasone may serve as a novel promising therapeutic strategy for the treatment of influenza A-induced pneumonia.

18.
PeerJ ; 10: e13148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35411258

RESUMO

Our study aims to explore the active components and mechanisms of the Danshen-Guizhi drug pair in treating ovarian cancer by network pharmacology and in vitro experiment. The "component-target-pathway" diagram of the Danshen-Guizhi drug pair was established by network pharmacology, and the effective active components, important targets as well as potential mechanisms of the Danshen-Guizhi drug pair were analyzed. The predicted results were verified by molecular docking and in vitro experiments. The main active components of the Danshen-Guizhi drug pair in the treatment of ovarian cancer are salviolone, luteolin, ß-sitosterol and tanshinone IIA. The main core target is PTGS2. The pathways involved mainly include the cancer pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway. The molecular docking results showed that salviolone and tanshinone IIA had good binding ability to the target. The expression of PTGS2 mRNA and PGE2 in ovarian cells were significantly inhibited by salviolone. The mechanism of the Danshen-Guizhi drug pair in the treatment of ovarian cancer may be regulating cell proliferation, apoptosis and tumor immunity. This provides a theoretical basis for the clinical development and application of the Danshen-Guizhi drug pair.


Assuntos
Neoplasias Ovarianas , Salvia miltiorrhiza , Feminino , Humanos , Farmacologia em Rede , Ciclo-Oxigenase 2/genética , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias Ovarianas/tratamento farmacológico
19.
ACS Nano ; 16(8): 12262-12275, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943956

RESUMO

The development of molecular imaging probes to identify key cellular changes within lung metastases may lead to noninvasive detection of metastatic lesions in the lung. In this study, we constructed a macrophage-targeted clickable albumin nanoplatform (CAN) decorated with mannose as the targeting ligand using a click reaction to maintain the intrinsic properties of albumin in vivo. We also modified the number of mannose molecules on the CAN and found that mannosylated serum albumin (MSA) harboring six molecules of mannose displayed favorable pharmacokinetics that allowed high-contrast imaging of the lung, rendering it suitable for in vivo visualization of lung metastases. Due to the optimized control of functionalization and surface modification, MSA enhanced blood circulation time and active/passive targeting abilities and was specifically incorporated by mannose receptor (CD206)-expressing macrophages in the metastatic lung. Moreover, extensive in vivo imaging studies using single-photon emission computed tomography (SPECT)/CT and positron emission tomography (PET) revealed that blood circulation of time-optimized MSA can be used to discern metastatic lesions, with a strong correlation between its signal and metastatic burden in the lung.


Assuntos
Neoplasias Pulmonares , Manose , Humanos , Tempo de Circulação Sanguínea , Macrófagos , Albumina Sérica , Neoplasias Pulmonares/diagnóstico por imagem
20.
J Vet Med Sci ; 73(5): 687-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21187680

RESUMO

Currently, murine noroviruses (MNV) are the most prevalent viral pathogens identified in laboratory animal facilities. While several reports exist concerning the prevalence of MNV in North American research facilities, very few reports are available for other parts of the world, including Korea. This study evaluated the prevalence of MNV infection in 745 murine sera collected from 15 animal facilities in Korea by enzyme linked immunosorbent assay (ELISA). Positive cases were subcategorized by murine strain/genetics, housing environments and animal sources. In summary, 6.6% of inbred/outbred mice purchased from commercial vendors were seropositive, 9.6% of in-house colonies were seropositive and 27.0% of genetically modified mice (GMM) were seropositive. Partial gene amplification of fecal isolates from infected animals showed that they were homologous (100%) with MNV-4.


Assuntos
Animais de Laboratório , Infecções por Caliciviridae/veterinária , Norovirus/classificação , Doenças dos Roedores/virologia , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Feminino , Masculino , Camundongos , Prevalência , República da Coreia/epidemiologia , Doenças dos Roedores/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa