Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Parasitol Res ; 122(10): 2405-2411, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610453

RESUMO

Larvae of an unidentified Echinocephalus species were obtained from two fish species: red porgy or common seabream (Pagrus pagrus) and greater lizard fish (Saurida undosquamis) from the Red Sea. The prevalence of Echinocephalus sp. larvae in P. pagrus was 4.92% and 4.98% in S. undosquamis. The length, width, cephalic bulb, and spine shape and pattern of the larvae resembled Echinocephalus overstreeti. SSU gene sequences of larvae from P. pagrus and S. undosquamis were identical. Comparison of the SSU sequence to those available in GenBank showed that the larvae from P. pagrus and S. undosquamis are diagnosably distinct. Based on sequence similarity and published phylogenetic analysis, these larvae are most similar to an unknown species of Echinocephalus from an Australian sea snake (Hydrophis peronii). Despite morphological similarities of the Red Sea larvae to E. overstreeti, the SSU sequence differences show that they are not the same species.


Assuntos
Lagartos , Parasitos , Perciformes , Dourada , Espirurídios , Animais , Larva , Filogenia , Austrália
2.
Am Nat ; 195(5): 918-926, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32364782

RESUMO

Parasites have evolved a diversity of lifestyles that exploit the biology of their hosts. Some nematodes that parasitize mammals pass via the placenta or milk from one host to another. Similar cases of vertical transmission have never been reported in avian and nonavian reptiles, suggesting that egg laying may constrain the means of parasite transmission. However, here we report the first incidence of transovarial transmission of a previously undescribed nematode in an egg-laying amniote, the common wall lizard (Podarcis muralis). Nematodes enter the developing brain from the female ovary early in embryonic development. Infected lizard embryos develop normally and hatch with nematodes residing in their braincase. We present a morphological and molecular phylogenetic characterization of the nematode and suggest that particular features of lizard biology that are absent from birds and turtles facilitated the evolutionary origin of this novel life history.


Assuntos
Interações Hospedeiro-Parasita , Transmissão Vertical de Doenças Infecciosas/veterinária , Lagartos , Infecções por Spirurida/veterinária , Animais , Inglaterra , Feminino , França , Itália , Masculino , Infecções por Spirurida/transmissão , Spirurina/classificação , Spirurina/isolamento & purificação
3.
Syst Biol ; 67(5): 888-900, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528459

RESUMO

Ascaridoids are among the commonest groups of zooparasitic nematodes (roundworms) and occur in the alimentary canal of all major vertebrate groups, including humans. They have an extremely high diversity and are of major socio-economic importance. However, their evolutionary history remains poorly known. Herein, we performed a comprehensive phylogenetic analysis of the Ascaridoidea. Our results divided the Ascaridoidea into six monophyletic major clades, i.e., the Heterocheilidae, Acanthocheilidae, Anisakidae, Ascarididae, Toxocaridae, and Raphidascarididae, among which the Heterocheilidae, rather than the Acanthocheilidae, represents the sister clade to the remaining ascaridoids. The phylogeny was calibrated using an approach that involves time priors from fossils of the co-evolving hosts, and dates the common ancestor of the Ascaridoidea back to the Early Carboniferous (approximately 360.47-325.27 Ma). The divergence dates and ancestral host types indicated by our study suggest that members of the Ascaridoidea first parasitized terrestrial tetrapods, and subsequently, extended their host range to elasmobranchs and teleosts. We also propose that the fundamental terrestrial-aquatic switches of these nematodes were affected by changes in sea-level during the Triassic to the Early Cretaceous.


Assuntos
Ascaridoidea/genética , Evolução Biológica , Filogenia , Animais , Ascaridoidea/classificação , Evolução Molecular , Genes Mitocondriais
4.
Mol Phylogenet Evol ; 107: 90-102, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27746318

RESUMO

Plectida is an important nematode order with species that occupy many different biological niches. The order includes free-living aquatic and soil-dwelling species, but its phylogenetic position has remained uncertain. We sequenced the complete mitochondrial genomes of two members of this order, Plectus acuminatus and Plectus aquatilis and compared them with those of other major nematode clades. The genome size and base composition of these species are similar to other nematodes; 14,831 and 14,372bp, respectively, with AT contents of 71.0% and 70.1%. Gene content was also similar to other nematodes, but gene order and coding direction of Plectus mtDNAs were dissimilar from other chromadorean species. P. acuminatus and P. aquatilis are the first chromadorean species found to contain a gene inversion. We reconstructed mitochondrial genome phylogenetic trees using nucleotide and amino acid datasets from 87 nematodes that represent major nematode clades, including the Plectus sequences. Trees from phylogenetic analyses using maximum likelihood and Bayesian methods depicted Plectida as the sister group to other sequenced chromadorean nematodes. This finding is consistent with several phylogenetic results based on SSU rDNA, but disagrees with a classification based on morphology. Mitogenomes representing other basal chromadorean groups (Araeolaimida, Monhysterida, Desmodorida, Chromadorida) are needed to confirm their phylogenetic relationships.


Assuntos
Genoma Mitocondrial , Nematoides/classificação , Rabditídios/classificação , Animais , Teorema de Bayes , Evolução Biológica , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Nematoides/genética , Filogenia , Rabditídios/genética
5.
Curr Genet ; 62(2): 391-403, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26581631

RESUMO

Testing hypotheses of monophyly for different nematode groups in the context of broad representation of nematode diversity is central to understanding the patterns and processes of nematode evolution. Herein sequence information from mitochondrial genomes is used to test the monophyly of diplogasterids, which includes an important nematode model organism. The complete mitochondrial genome sequence of Koerneria sudhausi, a representative of Diplogasteromorpha, was determined and used for phylogenetic analyses along with 60 other nematode species. The mtDNA of K. sudhausi is comprised of 16,005 bp that includes 36 genes (12 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) encoded in the same direction. Phylogenetic trees inferred from amino acid and nucleotide sequence data for the 12 protein-coding genes strongly supported the sister relationship of K. sudhausi with Pristionchus pacificus, supporting Diplogasteromorpha. The gene order of K. sudhausi is identical to that most commonly found in members of the Rhabditomorpha + Ascaridomorpha + Diplogasteromorpha clade, with an exception of some tRNA translocations. Both the gene order pattern and sequence-based phylogenetic analyses support a close relationship between the diplogasterid species and Rhabditomorpha. The nesting of the two diplogasteromorph species within Rhabditomorpha is consistent with most molecular phylogenies for the group, but inconsistent with certain morphology-based hypotheses that asserted phylogenetic affinity between diplogasteromorphs and tylenchomorphs. Phylogenetic analysis of mitochondrial genome sequences strongly supports monophyly of the diplogasteromorpha.


Assuntos
Genoma Mitocondrial , Nematoides/genética , Animais , Filogenia , RNA de Transferência/genética , RNA não Traduzido/genética
6.
Parasitol Res ; 114(12): 4591-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341800

RESUMO

Nucleotide sequences of the triose phosphate isomerase (TPI) gene (624 bp) and mitochondrial cytochrome b (cob) gene (520 bp) were obtained by PCR and evaluated for utility in inferring the phylogenetic relationships among Trichuris species. Published sequences of one other nuclear gene (18S or SSU rRNA, 1816-1846 bp) and one additional mitochondrial (mtDNA) gene (cytochrome oxidase 1, cox1, 342 bp) were also analyzed. Maximum likelihood and Bayesian inference methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data (two genes), the combined nuclear data (two genes), and the total evidence (four gene) dataset. Few Trichuris clades were uniformly resolved across separate analyses of individual genes. For the mtDNA, the cob gene trees had greater phylogenetic resolution and tended to have higher support values than the cox1 analyses. For nuclear genes, the SSU gene trees had slightly greater resolution and support values than the TPI analyses, but TPI was the only gene with reliable support for the deepest nodes in the tree. Combined analyses of genes yielded strongly supported clades in most cases, with the exception of the relationship among Trichuris clades 1, 2, and 3, which showed conflicting results between nuclear and mitochondrial genes. Both the TPI and cob genes proved valuable for inferring Trichuris relationships, with greatest resolution and support values achieved through combined analysis of multiple genes. Based on the phylogeny of the combined analysis of nuclear and mitochondrial genes, parsimony mapping of definitive host utilization depicts artiodactyls as the ancestral hosts for these Trichuris, with host-shifts into primates, rodents, and Carnivora.


Assuntos
Citocromos b/genética , DNA Mitocondrial/genética , Filogenia , RNA Ribossômico/genética , Trichuris/classificação , Animais , Sequência de Bases , Primers do DNA/genética , Genes Mitocondriais , Dados de Sequência Molecular , Análise de Sequência de DNA , Trichuris/genética , Trichuris/isolamento & purificação
7.
J Nematol ; 47(4): 337-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26941463

RESUMO

Near-full-length 18S and 28S rRNA gene sequences were obtained for 33 nematode species. Datasets were constructed based on secondary structure and progressive multiple alignments, and clades were compared for phylogenies inferred by Bayesian and maximum likelihood methods. Clade comparisons were also made following removal of ambiguously aligned sites as determined using the program ProAlign. Different alignments of these data produced tree topologies that differed, sometimes markedly, when analyzed by the same inference method. With one exception, the same alignment produced an identical tree topology when analyzed by different methods. Removal of ambiguously aligned sites altered the tree topology and also reduced resolution. Nematode clades were sensitive to differences in multiple alignments, and more than doubling the amount of sequence data by addition of 28S rRNA did not fully mitigate this result. Although some individual clades showed substantially higher support when 28S data were combined with 18S data, the combined analysis yielded no statistically significant increases in the number of clades receiving higher support when compared to the 18S data alone. Secondary structure alignment increased accuracy in positional homology assignment and, when used in combination with paired-site substitution models, these structural hypotheses of characters and improved models of character state change yielded high levels of phylogenetic resolution. Phylogenetic results included strong support for inclusion of Daubaylia potomaca within Cephalobidae, whereas the position of Fescia grossa within Tylenchina varied depending on the alignment, and the relationships among Rhabditidae, Diplogastridae, and Bunonematidae were not resolved.

8.
BMC Evol Biol ; 13: 12, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23331769

RESUMO

BACKGROUND: The nematode infraorder Tylenchomorpha (Class Chromadorea) includes plant parasites that are of agricultural and economic importance, as well as insect-associates and fungal feeding species. Among tylenchomorph plant parasites, members of the superfamily Tylenchoidea, such as root-knot nematodes, have great impact on agriculture. Of the five superfamilies within Tylenchomorpha, one (Aphelenchoidea) includes mainly fungal-feeding species, but also some damaging plant pathogens, including certain Bursaphelenchus spp. The evolutionary relationships of tylenchoid and aphelenchoid nematodes have been disputed based on classical morphological features and molecular data. For example, similarities in the structure of the stomatostylet suggested a common evolutionary origin. In contrast, phylogenetic hypotheses based on nuclear SSU ribosomal DNA sequences have revealed paraphyly of Aphelenchoidea, with, for example, fungal-feeding Aphelenchus spp. within Tylenchomorpha, but Bursaphelenchus and Aphelenchoides spp. more closely related to infraorder Panagrolaimomorpha. We investigated phylogenetic relationships of plant-parasitic tylenchoid and aphelenchoid species in the context of other chromadorean nematodes based on comparative analysis of complete mitochondrial genome data, including two newly sequenced genomes from Bursaphelenchus xylophilus (Aphelenchoidea) and Pratylenchus vulnus (Tylenchoidea). RESULTS: The complete mitochondrial genomes of B. xylophilus and P. vulnus are 14,778 bp and 21,656 bp, respectively, and identical to all other chromadorean nematode mtDNAs in that they contain 36 genes (lacking atp8) encoded in the same direction. Their mitochondrial protein-coding genes are biased toward use of amino acids encoded by T-rich codons, resulting in high A+T richness. Phylogenetic analyses of both nucleotide and amino acid sequence datasets using maximum likelihood and Bayesian methods did not support B. xylophilus as most closely related to Tylenchomorpha (Tylenchoidea). Instead, B. xylophilus, was nested within a strongly supported clade consisting of species from infraorders Rhabditomorpha, Panagrolaimomorpha, Diplogasteromorpha, and Ascaridomorpha. The clade containing sampled Tylenchoidea (P. vulnus, H. glycines, and R. similis) was sister to all analyzed chromadoreans. Comparison of gene arrangement data was also consistent with the phylogenetic relationships as inferred from sequence data. Alternative tree topologies depicting a monophyletic grouping of B. xylophilus (Aphelenchoidea) plus Tylenchoidea, Tylenchoidea plus Diplogasteromorpha (Pristionchus pacificus), or B. xylophilus plus Diplogasteromorpha were significantly worse interpretations of the mtDNA data. CONCLUSIONS: Phylogenetic trees inferred from nucleotide and amino acid sequences of mtDNA coding genes are in agreement that B. xylophilus (the single representative of Aphelenchoidea) is not closely related to Tylenchoidea, indicating that these two groups of plant parasites do not share an exclusive most recent common ancestor, and that certain morphological similarities between these stylet-bearing nematodes must result from convergent evolution. In addition, the exceptionally large mtDNA genome size of P. vulnus, which is the largest among chromadorean nematode mtDNAs sequenced to date, results from lengthy repeated segments in non-coding regions.


Assuntos
Genoma Mitocondrial , Nematoides/genética , Filogenia , Plantas/parasitologia , Animais , Teorema de Bayes , DNA de Helmintos/genética , Ordem dos Genes , Genoma Helmíntico , Funções Verossimilhança , Anotação de Sequência Molecular
9.
Mol Phylogenet Evol ; 68(2): 176-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23567022

RESUMO

Acanthocephalans of the family Polymorphidae Meyer, 1931 are obligate endoparasites with complex life cycles. These worms use vertebrates (marine mammals, fish-eating birds and waterfowl) as definitive hosts and invertebrates (amphipods, decapods and euphausiids) as intermediate hosts to complete their life cycle. Polymorphidae has a wordwide distribution, containing 12 genera, with approximately 127 species. The family is diagnosed by having a spinose trunk, bulbose proboscis, double-walled proboscis receptacle, and usually four to eight tubular cement glands. To conduct a phylogenetic analysis, in the current study sequences of the small (18S) and large-subunit (28S) ribosomal RNA, and cytochrome c oxidase subunit 1 (cox 1) were generated for 27 taxa representing 10 of 12 genera of Polymorphidae, plus three additional species of acanthocephalans that were used as outgroups. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian analyses were conducted on a combined nuclear rRNA (18S+28S) data set and on a concatenated dataset of nuclear plus one mitochondrial gene (18S+28S+cox 1). Phylogenetic analyses inferred with the concatenated dataset of three genes support the monophyly of nine genera (Andracantha, Corynosoma, Bolbosoma, Profilicollis, Pseudocorynosoma, Southwellina, Arhythmorhynchus, Hexaglandula and Ibirhynchus). However, the four sampled species of Polymorphus were nested within several clades, indicating that these species do not share a common ancestor, requiring further taxonomic revision using phylogenetic systematics, and reexamination of morphological and ecological data. By mapping definitive and intermediate host association onto the resulting cladogram, we observe that aquatic birds were the ancestral definitive hosts for the family with a secondary colonization and diversification to marine mammals. Whereas amphipods were ancestral intermediate hosts and that the association with decapods represent episodes of secondary colonization that arose several times during the evolutionary history of the family. Our results are useful to start testing hypothesis about the evolutionary history of this highly diverse family of acanthocephalans.


Assuntos
Acantocéfalos/genética , Genes de Helmintos , Genes Mitocondriais , Filogenia , Animais , Teorema de Bayes , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Funções Verossimilhança , Modelos Genéticos , Tipagem de Sequências Multilocus , RNA de Helmintos/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética
10.
BMC Evol Biol ; 12: 60, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22559142

RESUMO

BACKGROUND: Anguillicolidae Yamaguti, 1935 is a family of parasitic nematode infecting fresh-water eels of the genus Anguilla, comprising five species in the genera Anguillicola and Anguillicoloides. Anguillicoloides crassus is of particular importance, as it has recently spread from its endemic range in the Eastern Pacific to Europe and North America, where it poses a significant threat to new, naïve hosts such as the economic important eel species Anguilla anguilla and Anguilla rostrata. The Anguillicolidae are therefore all potentially invasive taxa, but the relationships of the described species remain unclear. Anguillicolidae is part of Spirurina, a diverse clade made up of only animal parasites, but placement of the family within Spirurina is based on limited data. RESULTS: We generated an extensive DNA sequence dataset from three loci (the 5' one-third of the nuclear small subunit ribosomal RNA, the D2-D3 region of the nuclear large subunit ribosomal RNA and the 5' half of the mitochondrial cytochrome c oxidase I gene) for the five species of Anguillicolidae and used this to investigate specific and generic boundaries within the family, and the relationship of Anguillicolidae to other spirurine nematodes. Neither nuclear nor mitochondrial sequences supported monophyly of Anguillicoloides. Genetic diversity within the African species Anguillicoloides papernai was suggestive of cryptic taxa, as was the finding of distinct lineages of Anguillicoloides novaezelandiae in New Zealand and Tasmania. Phylogenetic analysis of the Spirurina grouped the Anguillicolidae together with members of the Gnathostomatidae and Seuratidae. CONCLUSIONS: The Anguillicolidae is part of a complex radiation of parasitic nematodes of vertebrates with wide host diversity (chondrichthyes, teleosts, squamates and mammals), most closely related to other marine vertebrate parasites that also have complex life cycles. Molecular analyses do not support the recent division of Anguillicolidae into two genera. The described species may hide cryptic taxa, identified here by DNA taxonomy, and this DNA barcoding approach may assist in tracking species invasions. The propensity for host switching, and thus the potential for invasive behaviour, is found in A. crassus, A. novaezelandiae and A. papernai, and thus may be common to the group.


Assuntos
Anguilla/parasitologia , Dracunculoidea/classificação , Filogenia , Sacos Aéreos/parasitologia , Animais , DNA Mitocondrial/genética , Variação Genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Análise de Sequência de DNA , Especificidade da Espécie
11.
J Parasitol ; 108(5): 441-452, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197732

RESUMO

Phylogenetic relationships among the mammal-parasitic lungworms (Metastrongyloidea) were inferred using small- and large-subunit ribosomal DNA sequences together with 12S ribosomal mtDNA sequences. Maximum parsimony and Bayesian inference methods were used from optimal alignments and those filtered for alignment ambiguity. Analysis of 30 ingroup sequences using ribosomal DNA sequences yielded a single most parsimonious tree. Monophyly of the Metastrongyloidea was supported, but there was no support for monophyly of any of the 7 families as they have been traditionally defined. Parafilaroides decorus, an abursate lungworm of pinnipeds currently classified in the Filaroididae, was nested within a clade containing members of the Pseudaliidae, parasites of cetaceans. The tree also shows clades somewhat resembling the traditional familial divisions of the Metastrongyloidea, but in all groups, paraphyletic relationships were recovered. In a combined analysis of nuclear rDNA and 12S mtDNA, maximum parsimony and Bayesian analyses showed similar patterns to those observed with only nuclear rDNA sequences. Based on the phylogeny, the respiratory tract was inferred to be the ancestral predilection site for Metastrongyloidea, with multiple evolutionary invasions of extrapulmonary sites such as sinuses, circulatory system, and meninges. Similarly, the ancestral host was inferred to be a carnivore with subsequent colonization events into marsupial, rodent, artiodactyl, pinniped, and cetacean hosts.


Assuntos
Carnívoros , Metastrongyloidea , Animais , Teorema de Bayes , DNA Mitocondrial/genética , DNA Ribossômico/genética , Filogenia
12.
BMC Genomics ; 12: 392, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813000

RESUMO

BACKGROUND: The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution. RESULTS: For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp) representing Ascaridida, Wellcomia siamensis (14,128 bp) representing Oxyurida, and Heliconema longissimum (13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result. CONCLUSION: The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3rd positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.


Assuntos
Evolução Molecular , Genoma Mitocondrial/genética , Nematoides/genética , Filogenia , Análise de Sequência de DNA , Animais , Códon/genética , DNA Mitocondrial/genética , Bases de Dados Genéticas , Nematoides/classificação , RNA Ribossômico/genética , RNA de Transferência/genética
13.
BMC Genomics ; 12: 574, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22111877

RESUMO

BACKGROUND: Anopheles gambiae is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in An. gambiae. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted. RESULTS: In this study, we present the orthologs and phylogeny of 17 An. gambiae MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in An. gambiae cells in vitro to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades. CONCLUSIONS: The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of An. gambiae and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.


Assuntos
Anopheles/enzimologia , Anopheles/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Filogenia , Animais , Anopheles/imunologia , Linhagem Celular , Biologia Computacional , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunidade Inata , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Parasitology ; 138(13): 1688-709, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21281559

RESUMO

Herein we review theoretical and methodological considerations important for finding and delimiting cryptic species of parasites (species that are difficult to recognize using traditional systematic methods). Applications of molecular data in empirical investigations of cryptic species are discussed from an historical perspective, and we evaluate advantages and disadvantages of approaches that have been used to date. Developments concerning the theory and practice of species delimitation are emphasized because theory is critical to interpretation of data. The advantages and disadvantages of different molecular methodologies, including the number and kind of loci, are discussed relative to tree-based approaches for detecting and delimiting cryptic species. We conclude by discussing some implications that cryptic species have for research programmes in parasitology, emphasizing that careful attention to the theory and operational practices involved in finding, delimiting, and describing new species (including cryptic species) is essential, not only for fully characterizing parasite biodiversity and broader aspects of comparative biology such as systematics, evolution, ecology and biogeography, but to applied research efforts that strive to improve development and understanding of epidemiology, diagnostics, control and potential eradication of parasitic diseases.


Assuntos
Biodiversidade , Classificação/métodos , Técnicas Genéticas , Parasitos/classificação , Parasitos/genética , Animais , Helmintíase Animal/parasitologia , Helmintos/classificação , Helmintos/genética , Parasitologia/métodos , Especificidade da Espécie
15.
Parasitol Res ; 108(4): 781-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212982

RESUMO

In the present study, 407 anisakid nematodes, collected from 11 different species of cetaceans of the families Delphinidae, Kogiidae, Physeteridae, and Ziphiidae, from the southeastern Atlantic coasts of USA, the Gulf of Mexico, and the Caribbean Sea, were examined morphologically and genetically characterized by PCR restriction fragment length polymorphism to identify them to species level, assess their relative frequencies in definitive hosts, and determine any host preference. Sequence data from nuclear ribosomal internal transcribed spacer and mitochondrial cox2 genes were analysed by maximum parsimony and Bayesian inference methods, as separate and combined datasets, to evaluate phylogenetic relationships among taxa. The results revealed a highly diverse ascaridoid community. Seven Anisakis species and Pseudoterranova species were recovered as adult parasites. Larval forms of Contracaecum multipapillatum were also found in a coastal population of bottlenose dolphins. The phylogenetic trees obtained from the combined dataset (and most individual datasets) revealed the existence of distinct clades, the first including species of the Anisakis simplex complex (A. simplex s.s., Anisakis pegreffii, A. simplex C), (Anisakis nascettii, Anisakis ziphidarum) and the second including Pseudoterranova ceticola ((Anisakis paggiae, (Anisakis physeteris, Anisakis brevispiculata)). This finding, excluding the relationship of P. ceticola, is consistent with the morphology of adult and larval specimens. Considering the presence versus absence of an intestinal cecum, the relationship of P. ceticola with the members of the second clade of Anisakis appears inconsistent with morphological evidences but consistent with host preference. The position of Anisakis typica as the sister group to the two main anisakid clades indicates that it represents a third distinct lineage.


Assuntos
Ascaridoidea/classificação , Ascaridoidea/isolamento & purificação , Cetáceos/parasitologia , Filogenia , Animais , Ascaridoidea/genética , Região do Caribe , Análise por Conglomerados , Ciclo-Oxigenase 2/genética , DNA de Helmintos/química , DNA de Helmintos/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Proteínas de Helminto/genética , México , Dados de Sequência Molecular , Tipagem Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Sudeste dos Estados Unidos
16.
Parasitol Res ; 109(2): 257-65, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21537983

RESUMO

The objective of this article is to review knowledge on the hookworm Uncinaria lucasi Stiles, 1901 in northern fur seals, Callorhinus ursinus Linnaeus, 1758. Emphasis is placed on research on this host-parasite system in the Pribilof Islands, AK, USA where the bulk of the studies has been performed.


Assuntos
Ancylostomatoidea/patogenicidade , Otárias/parasitologia , Animais , Pesquisa Biomédica/tendências , Interações Hospedeiro-Parasita
17.
J Parasitol ; 107(3): 411-420, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030177

RESUMO

Sequences of the mitochondrial cytochrome c oxidase 1 (COI) gene of 115 Baylisascaris procyonis individuals from 13 U.S. states and 1 Canadian province were obtained from 44 raccoon hosts to assess genetic variation and geographic structure. The maximum genetic distance between individuals was low (1.6%), consistent with a single species. Moderate COI haplotype (h = 0.60) and nucleotide (π = 0.0053) diversity were found overall. Low haplotype diversity was found among samples east of the Mississippi River (h = 0.036), suggesting that historical growth and expansion of raccoon populations in this region could be responsible for high parasite gene flow or a selective sweep of B. procyonis mtDNA. There was low genetic structure (average Φst = 0.07) for samples east of the continental divide, but samples from Colorado showed higher diversity and differentiation from midwestern and eastern samples. There was marked genetic structure between samples from east and west of the continental divide, with no haplotypes shared between these regions. There was no significant isolation by distance among any of these geographic samples. The phylogeographic patterns for B. procyonis are similar to genetic results reported for their raccoon definitive hosts. The phylogeographic divergence of B. procyonis from east and west of the continental divide may involve vicariance resulting from Pleistocene glaciation and associated climate variation.


Assuntos
Infecções por Ascaridida/veterinária , Ascaridoidea/classificação , Guaxinins/parasitologia , Alberta/epidemiologia , Animais , Infecções por Ascaridida/epidemiologia , Ascaridoidea/enzimologia , Ascaridoidea/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fluxo Gênico , Variação Genética , Haplótipos , Filogeografia , Estados Unidos/epidemiologia
18.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664138

RESUMO

Draft genome sequences of 28 strains of Microbacteriaceae from plants infested by plant-parasitic nematodes were obtained using Illumina technology. The sequence data will provide useful baseline information for the development of comparative genomics and systematics of Microbacteriaceae and facilitate understanding of molecular mechanisms involved in interactions between plants and nematode-associated bacterial complexes.

19.
J Parasitol ; 106(3): 383-391, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491171

RESUMO

The long-term fidelity of pinniped hosts to their natal rookery site suggests the genetic architecture of their Uncinaria spp. hookworms should be strongly structured by host breeding biology. However, historical events affecting host populations may also shape parasite genetic structure. Sequences of the mitochondrial cytochrome c oxidase 1 (COI) gene of 86 Uncinaria lucasi individuals were obtained to assess genetic variation and structure of nematodes from 2 host species (68 hookworms from northern fur seals; 18 hookworms from Steller sea lions) and rookeries from 3 widely separated geographic regions: the western Bering Sea and Sea of Okhotsk, eastern Bering Sea, and the eastern Pacific Ocean. High COI haplotype (h = 0.96-0.98) and nucleotide (π = 0.014) diversity was found. The haplotype network showed a star-shaped pattern with a large number of haplotypes separated by few substitutions. The network did not show separation of U. lucasi by geographic region or host species. Fst values between U. lucasi individuals representing geographic regions showed no differentiation, consistent with the absence of genetic structure. At face value, this lack of genetic structure in U. lucasi suggests high gene flow but could also be explained by recent (post-glacial) population expansions of northern fur seals and their hookworms.


Assuntos
Ancylostomatoidea/fisiologia , Caniformia/parasitologia , Infecções por Uncinaria/veterinária , Sequência de Aminoácidos , Ancylostomatoidea/genética , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Variação Genética , Haplótipos/genética , Infecções por Uncinaria/parasitologia , Infecções por Uncinaria/transmissão , Masculino , Mitocôndrias/enzimologia , Oceano Pacífico , Alinhamento de Sequência/veterinária
20.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943566

RESUMO

Draft genome sequences of 13 bacterial strains from the family Microbacteriaceae were generated using Illumina technology. The genome sizes varied from 3.0 to 4.8 Mb, and the DNA G+C content was 68.1 to 72.5%. The sequences obtained will contribute to the development of genome-based taxonomy and understanding of molecular interactions between bacteria and plants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa