Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(31): 22344-22358, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010906

RESUMO

In this study, zinc oxide nanoparticles (ZnO NPs) were fabricated using Equisetum diffusum D extract and their diverse properties and applications were studied. Phytochemical analysis confirmed the presence of phenols and flavonoids in the plant extract, playing a crucial role in the stabilization and reduction of the synthesized nanoparticles. The greenly synthesized ZnO NPs were characterized through a range of analytical techniques. UV-visible spectrophotometry has been employed to investigate their optical characteristics. FTIR spectroscopy was employed to identify the functional groups responsible for the synthesis of the ZnO NPs. The structural properties were evaluated using XRD. The morphology and size distribution of the synthesized NPs were examined using SEM, DLS, and elemental spectra evaluated using EDX. The charge that develops at the interface was analyzed using zeta potential which accounts for stability of the NPs. The ZnO NPs exhibited excellent photocatalytic degradation of cationic (methylene blue), anionic (methyl orange), and nonionic (p-nitrophenol) dyes under sunlight exposure with photocatalytic degradation of 85.61%, 79.10%, and 89.95% respectively. Additionally, the nanoparticles displayed antimicrobial activity against Gram-positive and Gram-negative bacteria, and noteworthy antioxidant potential. The anti-inflammatory activity of the ZnO NPs, attributed to their ability to inhibit protein denaturation, was dose-dependent. Overall, our findings highlight the versatile properties of the greenly synthesized ZnO NPs, showcasing their potential in environmental remediation, and antimicrobial formulations, and as promising candidates for further exploration in the biomedical fields, including drug delivery and therapeutics.

2.
RSC Adv ; 14(12): 8018-8027, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38454944

RESUMO

The current research work is based on the evaluation of a citric acid (CA) cross-linked Aloe vera (Aloe barbadensis M.) leaf hydrogel (CL-ALH) for pH-dependent and sustained drug release application. The CA was used in different concentrations (1.25, 2.5, 5.0, and 10.0%) to cross-link the ALH using homogenous reaction conditions. The synthesis of CL-ALH was confirmed through Fourier transform and nuclear magnetic resonance spectroscopic studies. The thermal analysis indicated that the ALH and CL-ALH were stable and decomposed in two steps. The scanning electron microscopic images of CL-ALH confirmed its porous nature due to the presence of interconnected channeling. The swelling of CL-ALH was evaluated at pH 1.2, 6.8, and 7.4 as well as in deionized water (DW). High swelling of CL-ALH was observed in DW, and at pH 7.4 and 6.8 whereas, less swelling of CL-ALH was witnessed at pH 1.2. CL-ALH also exhibited swelling/deswelling behavior in DW and ethanol, DW and normal saline, and at pH 7.4 and 1.2. Tablets were prepared from CL-ALH as a release retarding agent demonstrating the sustained release of venlafaxine hydrochloride (VFX) for 8 h. Whereas, VFX was released within 4 h from the ALH-based tablet formulation (un-cross-linked material) indicating the prolonged and sustained release behavior of CL-ALH. The VFX was released from CL-ALH tablets and followed zero-order kinetics. The mechanism followed by VFX release from CL-ALH tablets was non-Fickian diffusion. The in vivo fate of the tablet formulation was observed through an X-ray study. The CL-ALH-based tablet safely passed through the stomach of a stray dog without any significant erosion and then disintegrated in the small intestine and colon. These findings confirmed that the CL-ALH is an effective excipient for designing a sustained-release drug delivery system for the small intestine and colon.

3.
Int J Biol Macromol ; 259(Pt 2): 128879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145696

RESUMO

Herein, the hydrogel from the leaf of the Aloe vera plant (ALH) was succinylated (SALH) and saponified (NaSALH). The FTIR, solid-state CP/MAS 13C NMR, and SEM-EDX spectroscopic analyses witnessed the formation of SALH and NaSALH from ALH. The pHZPC for NaSALH was found to be 4.90, indicating the presence of -ve charge on its surface. The Cd2+ sorption efficiency of NaSALH was found to be dependent on pH, NaALH dose, Cd2+ concentration, contact time, and temperature. The maximum Cd2+ removal from DW and HGW was found to be 227.27 and 212.77 mg g-1 according to the Langmuir isothermal model (>0.99) at pH of 6, NaSALH dose of 40 mg g-1, Cd2+ concentration of 90 mg L-1, contact time of 30 min, and temperature of 298 K. The kinetic analysis of Cd2+ sorption data witnessed that the Cd2+ removal by chemisorption mechanism and followed pseudo-second-order kinetics (>0.99). The -ve values of ΔG° and ΔH° assessed the spontaneous and exothermic nature of sorption of Cd2+ by NaSALH. The regeneration and sorption/desorption studies indicated that the sorbent NaSALH is regenerable.


Assuntos
Aloe , Água Subterrânea , Poluentes Químicos da Água , Cádmio/química , Cinética , Hidrogéis , Dureza , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Água Subterrânea/química , Termodinâmica
4.
Int J Biol Macromol ; 270(Pt 1): 132306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740152

RESUMO

Combining natural polysaccharides with synthetic materials improves their functional properties which are essential for designing sustained-release drug delivery systems. In this context, the Aloe vera leaf mucilage/hydrogel (ALH) was reacted with acrylic acid (AA) to synthesize a copolymerized hydrogel, i.e., ALH-grafted-Polyacrylic acid (ALH-g-PAA) through free radical copolymerization. Concentrations of the crosslinker N,N'-methylene-bis-acrylamide (MBA), and the initiator potassium persulfate (KPS) were optimized to study their effects on ALH-g-PAA swelling. The FTIR and solid-state NMR (CP/MAS 13C NMR) spectra witnessed the formation of ALH-g-PAA. Scanning electron microscopy (SEM) analysis revealed superporous nature of ALH-g-PAA. The gel fraction (%) of ALH-g-PAA was directly related to the concentrations of AA and MBA whereas the sol fraction was inversely related to the concentrations of AA and MBA. The porosity (%) of ALH-g-PAA directly depends on the concentration of AA and MBA. The ALH-g-PAA swelled admirably at pH 7.4 and insignificantly at pH 1.2. The ALH-g-PAA offered on/off switching properties at pH 7.4/1.2. The metoprolol tartrate was loaded on different formulations of ALH-g-PAA. The ALH-g-PAA showed pH, time, and swelling-dependent release of metoprolol tartrate (MT) for 24 h following the first-order kinetic and Korsmeyer-Peppas model. Haemocompatibility studies ascertained the non-thrombogenic and non-hemolytic behavior of ALH-g-PAA.


Assuntos
Aloe , Hidrogéis , Mananas , Aloe/química , Concentração de Íons de Hidrogênio , Mananas/química , Hidrogéis/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Polímeros/química , Porosidade , Resinas Acrílicas/química , Acrilatos
5.
Acta Chim Slov ; 70(1): 86-90, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37005624

RESUMO

Rheumatoid arthritis has long been treated with acetylsalicylic acid, despite many side effects, including gastric ulcers. These side effects can be curtailed by preparing the metal complexes of8 acetylsalicylic acid, such as copper (II)-acetylsalicylate (CAS). Present study evaluates the pharmacokinetics parameters of CAS and the level of copper at extended dose levels using rabbit model. The concentrations of CAS and copper in plasma samples were determined by validated HPLC and atomic absorption spectroscopic (AAS) methods, respectively. Three doses, 1-3 mg Kg-1 were orally administered to six rabbits with two wash out periods. The blood samples were collected at different time intervals for 24 hours. The peak drug concentration (Cmax) for these doses at a time to peak drug concentration (tmax) 0.5 h was determined to be 0.38, 0.76 and 1.14 µg mL-1. The half-life of drug (t1/2) was 8.67, 8.73 and 8.81 h, which are perfect results for once a day dosing. The values of volume of distribution (Vd) and clearance (Cl) for CAS were 829, 833 and 837 L Kg-1 and 66.30, 66.74 and 66.95 L h-1, respectively. The AAS results showed that copper levels in rabbit blood plasma were increased with increasing the dosage of CAS, but still remains under the safer limit, which was twofold higher than the reported safe limit.


Assuntos
Aspirina , Cobre , Animais , Coelhos , Área Sob a Curva
6.
Nat Prod Res ; : 1-15, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38146228

RESUMO

The current study reports the synthesis of silver nanoparticles (Ag NPs) using a polar extract of Cotoneaster nummularia leaves. Various analytical techniques, like UV-Vis spectrophotometry, FT-IR spectroscopy, XRD, SEM, and EDX were employed for characterisation. These techniques confirmed the stability of Ag NPs in solution and endorsed the interaction between different groups and Ag, crystal phase, surface morphology, and size of Ag NPs. UV-Vis spectrophotometer displayed SPR absorption bands ranging from 380 to 470 nm, characteristic of Ag NPs, within 1.0 h exposure to sunlight. XRD and SEM discovered the face-centered cubic crystals of Ag NPs with a 122.8 ± 1.1 nm average diameter. The bands at 525 cm-1 in FT-IR spectrum supported the development of Ag NPs. The Ag NPs showed antimicrobial potential against three pathogenic bacterial strains and two fungal strains. The wound healing results, as studied by tissue re-development and wound closure in rabbits were comparable to standard Sufre tulle® dressing.

7.
RSC Adv ; 13(41): 28666-28675, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37790097

RESUMO

Plasmonic nanoparticles such as Ag have gained great interest in the biomedical domain and chemical analysis due to their unique optical properties. Herein, we report a simple, cost-effective, and highly selective colorimetric sensor of mercury(ii) based on E. diffusum (horsetail) extract-functionalized Ag nanoparticles (ED-AgNPs). The ED-AgNPs were synthesized by exploiting the coordination of Ag+ with the various functional groups of ED extract under sunlight exposure for only tens of seconds. ED-AgNPs (63 nm) were characterized using various techniques such as UV-vis, FTIR, DLS, SEM and EDX. FTIR spectra suggested the successful encapsulation of the AgNPs surface with ED extract and XRD confirmed its crystalline nature. This ED-AgNPs colorimetric sensor revealed remarkable selectivity towards Hg2+ in aqueous solution among other transition metal ions through a redox reaction mechanism. Besides, the sensor exhibited high sensitivity with rapid response and a detection limit of 70 nM. The sensor demonstrated feasibility for Hg(ii) detection in spiked tap and river water samples. In addition, the synthesized ED-AgNPs revealed enhanced antimicrobial activity with higher efficacy against the Gram-positive bacterium (L. monocytogenes with an inhibition zone of 18 mm) than the Gram-negative bacterium (E. coli with an inhibition zone of 10 mm). The simplicity and adaptability of this colorimetric sensor render it a promising candidate for on-site and point-of-care detection of heavy metal ions in diverse conditions.

8.
Antioxidants (Basel) ; 12(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37371931

RESUMO

Photodegradation is an efficient strategy for the removal of organic pollutants from wastewater. Due to their distinct properties and extensive applications, semiconductor nanoparticles have emerged as promising photocatalysts. In this work, olive (Olea Europeae) fruit extract-based zinc oxide nanoparticles (ZnO@OFE NPs) were successfully biosynthesized using a one-pot sustainable method. The prepared ZnO NPs were systematically characterized using UV-Vis, FTIR, SEM, EDX and XRD and their photocatalytic and antioxidant activity was evaluated. SEM demonstrated the formation of spheroidal nanostructures (57 nm) of ZnO@OFE and the EDX analysis confirmed its composition. FTIR suggested the modification/capping of the NPs with functional groups of phytochemicals from the extract. The sharp XRD reflections revealed the crystalline nature of the pure ZnO NPs with the most stable hexagonal wurtzite phase. The photocatalytic activity of the synthesized catalysts was evaluated by measuring the degradation of methylene blue (MB) and methyl orange (MO) dyes under sunlight irradiation. Improved degradation efficiencies of 75% and 87% were achieved within only 180 min with photodegradation rate constant k of 0.008 and 0.013 min-1 for MB and MO, respectively. The mechanism of degradation was proposed. Additionally, ZnO@OFE NPs exhibited potent antioxidant activity against DPPH, hydroxyl, peroxide and superoxide radicals. Hence, ZnO@OFE NPs may have potential as a cost-effective and green photocatalyst for wastewater treatment.

9.
BMC Chem ; 17(1): 128, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770921

RESUMO

In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.

10.
ACS Omega ; 7(51): 48506-48519, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591136

RESUMO

The dose frequency of drugs belonging to class II is usually high and associated with harmful effects on the body. The study aimed to enhance the solubility of the poorly water-soluble drug amoxicillin (AM) by the solid dispersion (SD) technique. Six different SDs of AM, F1-F6, were prepared by the spray drying technique using two other carriers, HP-ß-CD (F1-F3) and HPMC (F4-F6), in 1:1, 1:2, and 1:3 drug-to-polymer ratios. These SDs were analyzed to determine their practical yield, drug content, and aqueous solubility using analytical techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and powder X-ray diffraction. The effect of polymer concentration on SDs was determined using aqueous solubility, in vitro dissolution, and in vivo studies. The results showed no drug-polymer interactions in SDs. Solubility studies showed that SDs based on the drug-to-polymer ratio of 1:2 (F2 and F5) were highly soluble in water compared to those with ratios of 1:1 and 1:3. In vitro dissolution studies also showed that SDs with a ratio of 1:2 released the highest drug concentration from both polymeric systems. The SDs based on HPMC confirmed the more sustained release of the drug as compared to that of HP-ß-CD. All the SDs were observed as stable and amorphous, with a smooth spherical surface. In vivo studies reveal the enhancement of pharmacokinetics parameters as compared to standard AM. Hence, it is confirmed that spray drying is an excellent technique to enhance the solubility of AM in an aqueous medium. This may contribute to the enhancement of the pharmacokinetic behaviors of SDs.

11.
Curr Drug Deliv ; 19(6): 686-696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34353263

RESUMO

OBJECTIVE: The objective of the present study was to design novel colon targeted delivery of Dicyclomine Hydrochloride (DCH) microsponges. METHODS: Microsponges (MS1-MS4) based on different ratios of Hydroxypropylmethylcellulose (HPMC) and DCH were prepared by quasi-emulsion solvent diffusion method. Micro-sponges were analyzed by determining percent yield, encapsulation efficiency, drug content, drug-polymer compatibility and thermal stability. Kinetic analysis of thermal stability data was done by Chang method, Friedman method and Broido method. In vitro dissolution study was carried out at pH 1.2, pH 6.8 and pH 7.4 at different time intervals. RESULTS: Results showed that there was no chemical interaction between DCH and HPMC in all microsponge formulations. Production yield, drug content and encapsulation efficiency were enhanced on increasing the drug-polymer ratio. Thermal stability of all the micro-sponges was greater than that of pure drug. In vitro drug release was decreased on increasing the polymer concentration at different pH levels. The newly prepared micro-sponges based on HPMC were confirmed as a promising means of colon-targeted delivery of DCH. An HPLC method was developed and validated for the bioequivalence study of newly designed microsponges. Pharmacokinetics parameters were calculated using the linear trapezoidal method after single oral administration of microsponges in white albino rabbits. Pharmacokinetics results indicate an enhancement in the value of t1/2, tmax, Cmax and AUC0-t of DCH in the microsponges as compared to standard DCH showing enhanced bioavailability of the drug after microsponges formation. CONCLUSION: The current study shows a new approach for colon-specific delivery of DCH based on microsponges.


Assuntos
Diciclomina , Sistemas de Liberação de Medicamentos , Animais , Colo , Derivados da Hipromelose , Cinética , Coelhos
12.
RSC Adv ; 11(32): 19755-19767, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479196

RESUMO

Herein, we report a polysaccharide-based hydrogel isolated from psyllium husk (a well-known dietary fiber) and evaluated for its swelling properties in deionized water (DW) at different physiological pH values, i.e., 1.2, 6.8 and 7.4. Swelling of psyllium hydrogel (PSH) in DW under the influence of temperature and at different concentrations of NaCl and KCl solutions was also examined. A pH-dependent swelling pattern of PSH was observed following the order DW > pH 7.4 > pH 6.8 > pH 1.2. Stimuli-responsive swelling and deswelling (on-off switching) behavior of PSH was observed in DW and ethanol, DW and normal saline, at pH 7.4 and pH 1.2 environments, respectively. Similar swelling behavior and on-off switching attribute of PSH-containing tablets indicated the unaltered nature of PSH even after compression. Scanning electron micrographs of swollen and then freeze-dried PSH via transverse and longitudinal cross-sections revealed hollow channels with an average pore size of 6 ± 2 µm. Furthermore, PSH concentration-dependent sustained release of theophylline from tablet formulation was witnessed for >15 h following the non-Fickian diffusion mechanism. Subacute toxicity studies revealed the non-toxic nature of PSH. Therefore, dietary fiber-based material, i.e., PSH could be a valuable pharmaceutical excipient for intelligent and targeted drug delivery.

13.
RSC Adv ; 10(34): 19832-19843, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520449

RESUMO

Artemisia vulgaris seeds extrude hydrogel (AVH), which shows extraordinary swelling in water, at pH 6.8, and 7.4, which follows second-order kinetics. AVH exhibits reversible swelling/deswelling in ethanol and normal saline as well at pH 7.4 and pH 1.2. Therefore, AVH shows stimuli-responsiveness in different physiological conditions, solvents, and electrolytes. The superporous nature of AVH in swollen/freeze-dried sculpture is exposed in their SEM micrographs. AVH-based aceclofenac tablet formulations offer sustained-release under simulated conditions of the gastrointestinal tract (GIT) in terms of pH and transit time. Pharmacokinetic studies also show the delay and prolonged plasma concentration with t max of 8 h, therefore, such formulations can be used to enhance the bioavailability of aceclofenac. The swelling behavior of the AVH tablet is also assessed using MRI. The in vivo fate of the AVH tablet is monitored by X-ray during the transit through the GIT. Acute toxicity studies of AVH indicate the absence of any toxicity which reveals the safety profile of AVH. Therefore, AVH can be used for oral, topical and ophthalmic drug delivery systems. These results establish the potential of AVH as a stimuli sensitive, pH-dependent, and sustained-release biomaterial for targeted drug delivery.

15.
Chem Biol Drug Des ; 88(6): 889-898, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27434226

RESUMO

Neurodegeneration, a complex disease state, comprises several pathways that contribute to cell death. Conventional approach of targeting only one of these pathways has not been proven to be entirely successful and has demanded a hypothetical change as to how researchers design and develop new drugs. In this study, effects of a series of α, ß-unsaturated carbonyl-based tetralone derivatives against Alzheimer's disease (AD) were investigated. Moreover, their activity toward amyloid ß-induced cytotoxicity was also studied. Six compounds including 3f, 3o, 3u, 3ae, 3af, and 3ag were discovered to be most protective against Aß-induced neuronal cell death in PC12 cells. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against MAO-B, AChE, and self-induced Aß1-42 aggregation. The compound 3f exhibited best AChE (IC50  = 0.045 ± 0.02 µm) inhibitory potential in addition to potent inhibition of MAO-B (IC50  = 0.88 ± 0.12 µm). Furthermore, compound 3f disassembled the Aß fibrils produced by self-induced Aß aggregation by 78.2 ± 4.8%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Tetralonas/uso terapêutico , Acetilcolinesterase/efeitos dos fármacos , Peptídeos beta-Amiloides/toxicidade , Animais , Butirilcolinesterase/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Inibidores da Colinesterase/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Células PC12 , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Espectrometria de Massas por Ionização por Electrospray
16.
J Med Chem ; 59(7): 3549-61, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27010345

RESUMO

Sixty-nine novel α,ß-unsaturated carbonyl based compounds, including cyclohexanone, tetralone, oxime, and oxime ether analogs, were synthesized. The antiproliferative activity determined by using seven different human cancer cell lines provided a structure-activity relationship. Compound 8ag exhibited high antiproliferative activity against Panc-1, PaCa-2, A-549, and PC-3 cell lines, with IC50 value of 0.02 µM, comparable to the positive control Erlotinib. The ten most active antiproliferative compounds were assessed for mechanistic effects on BRAF(V600E), EGFR TK kinases, and tubulin polymerization, and were investigated in vitro to reverse efflux-mediated resistance developed by cancer cells. Compound 8af exhibited the most potent BRAF(V600E) inhibitory activity with an IC50 value of 0.9 µM. Oxime analog 7o displayed the most potent EGFR TK inhibitory activity with an IC50 of 0.07 µM, which was analogous to the positive control. Some analogs including 7f, 8af, and 8ag showed a dual role as anticancer and MDR reversal agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Cicloexanonas/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Éteres/química , Neoplasias/tratamento farmacológico , Oximas/química , Piperidonas/síntese química , Piperidonas/farmacologia , Tetralonas/síntese química , Tetralonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Humanos , Modelos Moleculares , Mutação/genética , Neoplasias/patologia , Oximas/síntese química , Oximas/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Células Tumorais Cultivadas
17.
Braz. J. Pharm. Sci. (Online) ; 56: e17728, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1089197

RESUMO

A reverse phase high performance liquid chromatography method has been developed and validated for accelerated stability study and determination of pharmacokinetic parameters of venlafaxine HCl. The chromatographic separation was carried out using ODS analytical column (250 × 4.6 mm i.d., 5 µm particle size). The mobile phase included acetonitrile, methanol and potassium dihydrogen phosphate buffer (30:30:40; pH 6.1) at a flow rate 1.5 mL min−1. UV-Visible detector was used at wavelength of 227 nm to monitor elutions. Retention time observed was 2.745 min. The method was validated for linearity, accuracy, precision, sensitivity and robustness. Accelerated stability study of venlafaxine HCl capsules was carried out at 40 and 50 ºC under 75% RH level. Suggested method was successfully applied for the pharmacokinetic analysis of venlafaxine hydrochloride tablets. Each of ten albino rabbits (≈ 1.2 kg each) was orally administered with 5 mg dose of venlafaxine HCl. The method was proved to be linear (R2 >0.998), accurate (98.25-99.27%), sensitive (LOD: 35ngmL−1; LOQ: 105 ng mL−1) and robust (RSD<1%). The drug showed stability at accelerated conditions of temperature and humidity. The main pharmacokinetic parameters of tested products were as follows: tmax was 2.5h, Cmax was 56.5 µg mL−1, t1/2 was 8.2 h, AUC0-36 was 845.9 µg h mL−1. The developed method is suitable to apply for quality control analysis and pharmacokinetic studies.

18.
Braz. J. Pharm. Sci. (Online) ; 54(2): e17459, 2018. tab
Artigo em Inglês | LILACS | ID: biblio-951930

RESUMO

ABSTRACT Linseed hydrogel (LSH) was evaluated by acute toxicity for its potential application in oral drug delivery design. White albino mice and rabbits were divided in four groups (I-IV) and different doses of LSH (1, 2 and 5 g/kg body weight) were given except to the control group (I) that was left untreated. Rabbits were monitored for eye irritation, acute dermal toxicity and primary dermal irritation, whereas, body weight, food and water consumption, hematology and clinical biochemistry, gross necropsy and histopathology of vital organs were scrutinized in mice. LSH was considered safe after eye irritation test as no adverse signs or symptoms were seen in the eye. In dermal toxicity and irritation study, skin of treated rabbits was found normal in color without any edema or erythema. After oral administration, there was no sign of any abnormalities in treated group animals (II-IV). The hematology and clinical biochemistry of treated group animals was comparable with the control group. Histopathology of vital organs has not shown any lesion or abnormalities. In the light of these outcomes, it can be concluded that LSH is not a hazardous biomaterial and could be incorporated as an excipient in oral and dermal preparations.


Assuntos
Animais , Masculino , Feminino , Coelhos , Ratos , Polissacarídeos , Linho/classificação , Hidrogel de Polietilenoglicol-Dimetacrilato/análise , Liberação Controlada de Fármacos , Administração Oral , Testes de Toxicidade Aguda/métodos , Hematologia
19.
Braz. J. Pharm. Sci. (Online) ; 54(3): e17579, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974398

RESUMO

Glucuronoxylan hydrogel (GXH) isolated from M. pudica seeds was assessed for acute toxicology in albino mice that were alienated into four groups. Three groups, i.e., II, III and IV received GXH at a dose of 1, 2 and 5 g/kg, respectively while group I was retained untreated and provided routine diet. After administering GXH, mice were examined for vomiting, diarrhea, allergy and tremors for 8 h. All animals were carefully observed for food and water consumption at 1, 2, 3, 7 and 14 day after administering GXH. At the end of studies, blood samples were drawn for investigation of hematological and biochemical parameters. All animals were sacrificed, relative body weight of vital organs was calculated and their histopathology was studied. It was concluded that there was insignificant difference in body weight, behavioral pattern, food and water intake among treated and control groups. Haematology and biochemistry of blood samples from all groups were found analogous. Histopathological evaluation of vital body organs exhibited no lesions in all groups. Ocular, cardiac and dermal safety of GXH was also established on albino rabbits.


Assuntos
Animais , Masculino , Feminino , Camundongos , Coelhos , Mimosa pudica/toxicidade , Hidrogéis/análise , Testes de Toxicidade Aguda/análise , Polissacarídeos/farmacologia , Mimosa pudica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa