Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadl1230, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718109

RESUMO

The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Animais , Medula Espinal/fisiologia , Ratos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/fisiopatologia , Humanos , Estimulação Elétrica/métodos , Eletrodos Implantados
2.
Biomaterials ; 310: 122624, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38805956

RESUMO

The proliferation of medical wearables necessitates the development of novel electrodes for cutaneous electrophysiology. In this work, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is combined with a deep eutectic solvent (DES) and polyethylene glycol diacrylate (PEGDA) to develop printable and biocompatible electrodes for long-term cutaneous electrophysiology recordings. The impact of printing parameters on the conducting properties, morphological characteristics, mechanical stability and biocompatibility of the material were investigated. The optimised eutectogel formulations were fabricated in four different patterns -flat, pyramidal, striped and wavy- to explore the influence of electrode geometry on skin conformability and mechanical contact. These electrodes were employed for impedance and forearm EMG measurements. Furthermore, arrays of twenty electrodes were embedded into a textile and used to generate body surface potential maps (BSPMs) of the forearm, where different finger movements were recorded and analysed. Finally, BSPMs for three different letters (B, I, O) in sign-language were recorded and used to train a logistic regressor classifier able to reliably identify each letter. This novel cutaneous electrode fabrication approach offers new opportunities for long-term electrophysiological recordings, online sign-language translation and brain-machine interfaces.


Assuntos
Eletrodos , Aprendizado de Máquina , Poliestirenos , Impressão Tridimensional , Têxteis , Humanos , Poliestirenos/química , Condutividade Elétrica , Dispositivos Eletrônicos Vestíveis , Compostos Bicíclicos Heterocíclicos com Pontes/química , Géis/química , Polímeros/química , Polietilenoglicóis/química , Eletromiografia/métodos , Materiais Biocompatíveis/química
3.
Mater Horiz ; 9(6): 1727-1734, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474130

RESUMO

New fabrication approaches for mechanically flexible implants hold the key to advancing the applications of neuroengineering in fundamental neuroscience and clinic. By combining the high precision of thin film microfabrication with the versatility of additive manufacturing, we demonstrate a straight-forward approach for the prototyping of intracranial implants with electrode arrays and microfluidic channels. We show that the implant can modulate neuronal activity in the hippocampus through localized drug delivery, while simultaneously recording brain activity by its electrodes. Moreover, good implant stability and minimal tissue response are seen one-week post-implantation. Our work shows the potential of hybrid fabrication combining different manufacturing techniques in neurotechnology and paves the way for a new approach to the development of multimodal implants.


Assuntos
Fenômenos Eletrofisiológicos , Neurociências , Eletrofisiologia Cardíaca , Microtecnologia , Próteses e Implantes
4.
Sci Adv ; 6(40)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32998891

RESUMO

Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-µm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area-to-volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT:PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa