Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Chem Inf Model ; 61(7): 3559-3570, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34260246

RESUMO

Molecular dynamics simulations amounting to ≈8 µs demonstrate that the glucose transporter GLUT1 undergoes structural fluctuations mediated by the fluidity of the lipid bilayer and the proximity to glucose. The fluctuations of GLUT1 increase as the glucose concentration is raised. These fluctuations are more pronounced when the lipid bilayer is in the fluid compared to the gel phase. Glucose interactions are confined to the extra-membranous residues when the lipid is in the gel phase but diffuses into the transmembrane regions in the fluid phase. Proximity of glucose to GLUT1 causes asynchronous expansions of key bottlenecks at the internal and external openings of the central pore. This is accomplished only by small conformational changes at the single residue level that lower the resistance to glucose movements, thereby permitting unsteered glucose and water movements along the entire length of the pore. When glucose is near salt bridges located at the external and internal openings of the central pore, the distance separating the polar amino acid residues guarding these apertures tends to increase in both fluid and gel phases. It is evident that the multiplicity of glucose interactions, obtained with high concentrations, amplifies the structural fluctuations in GLUT1. The findings that most of the salt bridges and the bottlenecks appear to be operated by glucose proximity suggest that the main triggers to activation of transport are located within the solvent accessible linker regions in the extramembranous zones.


Assuntos
Glucose , Simulação de Dinâmica Molecular , Transporte Biológico , Transportador de Glucose Tipo 1 , Bicamadas Lipídicas , Domínios Proteicos
3.
Biophys J ; 112(6): 1176-1184, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355545

RESUMO

Experimental evidence has shown a close correlation between the composition and physical state of the membrane bilayer and glucose transport activity via the glucose transporter GLUT1. Cooling alters the membrane lipids from the fluid to gel phase, and also causes a large decrease in the net glucose transport rate. The goal of this study is to investigate how the physical phase of the membrane alters glucose transporter structural dynamics using molecular-dynamics simulations. Simulations from an initial fluid to gel phase reduce the size of the cavities and tunnels traversing the protein and connecting the external regions of the transporter and the central binding site. These effects can be ascribed solely to membrane structural changes since in silico cooling of the membrane alone, while maintaining the higher protein temperature, shows protein structural and dynamic changes very similar to those observed with uniform cooling. These results demonstrate that the protein structure is sensitive to the membrane phase, and have implications for how transmembrane protein structures respond to their physical environment.


Assuntos
Membrana Celular/metabolismo , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Simulação de Dinâmica Molecular , Transporte Biológico , Glucose/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Conformação Proteica , Conformação Proteica em alfa-Hélice
4.
J Membr Biol ; 247(11): 1161-79, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25163893

RESUMO

Structural changes and xylose docking to eight conformers of Escherichia Coli XylE, a xylose transporter similar to mammalian passive glucose transporters GLUTs, have been examined. Xylose docks to inward and outward facing conformers at a high affinity central site (K(i) 4-20 µM), previously identified by crystallography and additionally consistently docks to lower affinity sites in the external and internal vestibules (K(i) 12-50 µM). All these sites lie within intramolecular tunnels and cavities. Several local regions in the central transmembrane zone have large positional divergences of both skeleton carbon Cα positions and side chains. One such in TM 10 is the destabilizing sequence G388-P389-V390-C391 with an average RMSD (4.5 ± 0.4 Å). Interchange between conformer poses results in coalescence of tunnels with adjacent cavities, thereby producing a transitory channel spanning the entire transporter. A fully open channel exists in one inward-facing apo-conformer, (PDB 4ja4c) as demonstrated by several different tunnel-finding algorithms. The conformer interchanges produce a gated network within a branched central channel that permits staged ligand diffusion across the transporter during the open gate periods. Simulation of this model demonstrates that small-scale conformational changes required for sequentially opening gate with frequencies in the ns-µs time domain accommodate diffusive ligand flow between adjacent sites with association-dissociation rates in the µs-ms domain without imposing delays. This current model helps to unify the apparently opposing concepts of alternate access and multisite models of ligand transport.


Assuntos
Difusão , Modelos Químicos , Simulação de Acoplamento Molecular , Xilose/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Escherichia coli , Dados de Sequência Molecular , Porosidade , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Simportadores
5.
Exp Physiol ; 99(10): 1325-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085844

RESUMO

Arginine vasopressin (AVP) has trophic effects on the rat distal colon, increasing the growth of pericryptal myofibroblasts and reducing the colonic crypt wall permeability. This study aimed to reproduce in vitro the effects of AVP observed in vivo using cultures of human CCD-18Co myofibroblasts and T84 colonic epithelial cells. Proliferation of myofibroblasts was quantified by bromodeoxyuridine incorporation; the expression of platelet-derived growth factor A (PDGFA), platelet-derived growth factor B, epidermal growth factor, transforming growth factor-ß and vascular endothelial growth factor was measured by PCR and the expression of epithelial junction proteins by Western blot. Arginine vasopressin stimulated myofibroblast proliferation and the expression of PDGFA without affecting the expression of platelet-derived growth factor B, epidermal growth factor, transforming growth factor-ß or vascular endothelial growth factor. These effects were prevented when AVP receptor inhibitors were present in the medium. Pre-incubation of CCD-18Co cells with anti-PDGF antibody or with an inhibitor of the PDGF receptor abolished the effects of AVP. When colonocytes were incubated with medium obtained from myofibroblasts incubated with AVP, both cell proliferation and the expression of epithelial junction proteins increased; however, direct incubation of colonocytes with AVP did not modify these variables. These results demonstrate that AVP stimulates myofibroblast proliferation and induces PDGFA secretion, implying that PDGFA mediates local myofibroblast proliferation by an autocrine feedback loop and regulates epithelial proliferation and permeability by a paracrine mechanism.


Assuntos
Arginina Vasopressina/farmacologia , Proliferação de Células/efeitos dos fármacos , Colo/metabolismo , Células Epiteliais/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Linhagem Celular , Colo/citologia , Colo/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Permeabilidade , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Am J Physiol Cell Physiol ; 304(9): C918-26, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23467299

RESUMO

In vivo studies show that raised aldosterone (Aldo) during low-Na adaptation regulates the growth of pericryptal myofibroblasts and reduces the permeability of the colonic epithelium. The aim of this study was to reproduce in vitro the in vivo condition of increased Aldo using human CCD-18Co myofibroblasts and T84 colonic epithelial cells to measure myofibroblast and epithelial proliferation and the expression of intercellular junction proteins. Proliferation was quantified by measuring 5-bromo-2'-deoxyuridine incorporation. The myofibroblast expression of EGF, VEGFa, and transforming growth factor-ß1 (TGF-ß1) was measured by real-time PCR and the expression of junctional complex proteins by Western blot. Aldo stimulated the proliferation of myofibroblasts by 70% (P < 0.05) and increased EGF mRNA expression by 30% (P < 0.05) without affecting VEGFa and TGF-ß1. EGF concentration in the incubation medium increased by 30% (P < 0.05) 24 h after Aldo addition, and these effects were prevented by the addition of spironolactone. Myofibroblast proliferation in response to Aldo was mediated by EGF receptor (EGFR) and involved both MAPKK and phosphatidylinositol 3-kinase pathways. When T84 cells were incubated with medium from myofibroblasts stimulated with Aldo (conditioned medium), the expression of ß-catenin and claudin IV was increased by 30% (P < 0.05) and proliferation by 40% (P < 0.05). T84 proliferation decreased when α-EGF, or the EGFR antagonist AG1478, was present. Results in vivo indicate that rats fed a low-salt diet showed an increased expression of EGF and EGFR in the colonic mucosa. These results support the view that changes in colonic permeability during low-Na adaptation are mediated by the EGF secreted by myofibroblasts in response to raised Aldo.


Assuntos
Aldosterona/fisiologia , Colo/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Mucosa Intestinal/metabolismo , Miofibroblastos/metabolismo , Adaptação Fisiológica , Aldosterona/farmacologia , Animais , Linhagem Celular , Colo/citologia , Meios de Cultivo Condicionados , Fator de Crescimento Epidérmico/genética , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Expressão Gênica , Humanos , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Cloreto de Sódio na Dieta/administração & dosagem , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Membr Biol ; 246(6): 495-511, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23740044

RESUMO

In silico glucose docking to the transporter GLUT1 templated to the crystal structure of Escherichia coli XylE, a bacterial homolog of GLUT1-4 (4GBZ.pdb), reveals multiple docking sites. One site in the external vestibule in the exofacial linker between TM7 and -8 is adjacent to a missense T295M and a 4-mer insertion mutation. Glucose docking to the adjacent site is occluded in these mutants. These mutants cause an atypical form of glucose transport deficiency syndrome (GLUT1DS), where transport into the brain is deficient, although unusually transport into erythrocytes at 4 °C appears normal. A model in which glucose traverses the transporter via a network of saturable fixed sites simulates the temperature sensitivity of normal and mutant glucose influx and the mutation-dependent alterations of influx and efflux asymmetry when expressed in Xenopus oocytes at 37 °C. The explanation for the temperature sensitivity is that at 4 °C glucose influx between the external and internal vestibules is slow and causes glucose to accumulate in the external vestibule. This retards net glucose uptake from the external solution via two parallel sites into the external vestibule, consequently masking any transport defect at either one of these sites. At 37 °C glucose transit between the external and internal vestibules is rapid, with no significant glucose buildup in the external vestibule, and thereby unmasks any transport defect at one of the parallel input sites. Monitoring glucose transport in patients' erythrocytes at higher temperatures may improve the diagnostic accuracy of the functional test of GLUT1DS.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Eritrócitos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Transporte Biológico Ativo/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Temperatura Baixa , Eritrócitos/patologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucose/química , Glucose/genética , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética , Temperatura Alta , Humanos , Oócitos , Simportadores/química , Simportadores/genética , Simportadores/metabolismo , Xenopus laevis
9.
J Membr Biol ; 234(2): 75-112, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20204338

RESUMO

Most membrane transport models are determinate, requiring the transported ligand(s) to bind initially to a vacant site, which undergoes translation and releases ligand to the alternate side. The carrier reverts to its initial position to complete the net transport cycle. Ligand affinity may change during translation, but this must be compensated by an equivalent energy change(s) within the transport cycle. However, any asymmetric cyclic equilibrium deduced on this basis is thermodynamically fallacious. Determinate cotransport models imply lossless stoichiometric relationships between the complexed cotransported ligands. Independent ligand leakage apart from the mobile cotransport complex must occur outside the canonical cotransport pathway. In contrast, stochastic transport models assume independent ligand diffusion through a variably occluded channel(s) containing binding sites where ligands may undergo bimolecular exchanges. Energy dissipation is intrinsic to all stochastic transport models and occurs within the primary transport pathway. Frictional interactions within a shared path generate flow coupling between ligands. The primary driving forces causing transmembrane ligand flows are their electrochemical potential differences between the external solutions. Demonstrations that ligand exchanges in CLC and neurotransmitter transporters can be multimodal, encompassing both "channel"-like high and "transporter"-like lower conductance states and have independently regulated import and export exchange fluxes are major challenges to determinate models but are explicable by transient widening of a close-encounter region within the channel, leading to decreased coupling and enhanced efflux.


Assuntos
Transporte Biológico , Modelos Biológicos , Termodinâmica , Antiporters/fisiologia , Difusão , Cinética , Ligantes , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Neurotransmissores/metabolismo , Serotonina/metabolismo , Proteínas de Transporte de Sódio-Glucose/fisiologia , Simportadores/metabolismo
10.
Free Radic Biol Med ; 155: 49-57, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387586

RESUMO

UVA irradiation of human dermal fibroblasts and endothelial cells induces an immediate transient increase in cytosolic Fe(II), as monitored by the fluorescence Fe(II) reporters, FeRhonox1 in cytosol and MitoFerroGreen in mitochondria. Both superoxide dismutase (SOD) inhibition by tetrathiomolybdate (ATM) and catalase inhibition by 3-amino-1, 2, 4-triazole (ATZ) increase and prolong the cytosolic Fe(II) signal after UVA irradiation. SOD inhibition with ATM also increases mitochondrial Fe(II). Thus, mitochondria do not source the UV-dependent increase in cytosolic Fe(II), but instead reflect and amplify raised cytosolic labile Fe(II) concentration. Hence control of cytosolic ferritin iron release is key to preventing UVA-induced inflammation. UVA irradiation also increases dermal endothelial cell H2O2, as monitored by the adenovirus vector Hyper-DAAO-NES(HyPer). These UVA-dependent changes in intracellular Fe(II) and H2O2 are mirrored by increases in cell superoxide, monitored with the luminescence probe L-012. UV-dependent increases in cytosolic Fe(II), H2O2 and L-012 chemiluminescence are prevented by ZnCl2 (10 µM), an effective inhibitor of Fe(II) transport via ferritin's 3-fold channels. Quercetin (10 µM), a potent membrane permeable Fe(II) chelator, abolishes the cytosolic UVA-dependent FeRhonox1, Fe(II) and HyPer, H2O2 and increase in MitoFerroGreen Fe(II) signals. The time course of the quercetin-dependent decrease in endothelial H2O2 correlates with the decrease in FeRhox1 signal and both signals are fully suppressed by preloading cells with ZnCl2. These results confirm that antioxidant enzyme activity is the key factor in controlling intracellular iron levels, and hence maintenance of cell antioxidant capacity is vitally important in prevention of skin aging and inflammation initiated by labile iron and UVA.


Assuntos
Ferritinas , Ferro , Senescência Celular , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Pele/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa