Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(26): 13562-13572, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875489

RESUMO

Wetting is typically defined by the relative liquid to solid surface tension/energy, which are composed of polar and nonpolar subcontributions. Current studies often assume that they remain invariant, that is, surfaces are wetting-inert. Complex wetting scenarios, such as adaptive or reactive wetting processes, may involve time-dependent variations in interfacial energies. To maximize differences in energetic states, we employ low-energy perfluoroalkyls integrated with high-energy silica-based polar moieties grown on low-energy polydimethylsiloxane. To this end, we tune the hydrophilic-like wettability on these perfluoroalkyl-silica-polydimethylsiloxane surfaces. Drop contact behaviors range from invariantly hydrophobic at ca. 110° to rapidly spreading at ca. 0° within 5 s. Unintuitively, these vapor-grown surfaces transit toward greater hydrophilicity with increasing perfluoroalkyl deposition. Notably, this occurs as sequential silica-and-perfluoroalkyl deposition also leaves behind embedded polar moieties. We highlight how surfaces having such chemical heterogeneity are inherently wetting-reactive. By creating an abrupt wetting transition composed of reactive and inert domains, we introduce spatial dependency. Drops contacting the transition spread before retracting, occurring over the time scale of a few seconds. This phenomenon contradicts current understanding, exhibiting a uniquely (1) decreasing advancing contact angle and (2) increasing receding contact angle. To explain the behavior, we model such time- and space- dependent reactive wetting using first order kinetics. In doing so, we explore how reactive and recovery mechanisms govern the characteristic time scales of spreading and retracting sessile drops.

2.
Soft Matter ; 20(27): 5273-5295, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38952198

RESUMO

Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.

3.
Langmuir ; 37(44): 13012-13017, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34710321

RESUMO

The force required to detach a particle from a liquid-fluid interface is a direct measure of the capillary adhesion between the particle and the interface. Analytical expressions for the detachment force are available but are limited to nonrotating particles. In this work, we derive analytical expressions for the force required to detach a rotating spherical particle from a liquid-fluid interface. Our theory predicts that the rotation reduces the detachment force when there is a finite contact angle hysteresis between the particle and the liquid. For example, the force required to detach a particle with an advancing contact angle of 120° and a receding contact angle of 80° (e.g., polydimethylsiloxane particle at a water-air interface) is expected to be 25% lower when the particle rotates while it is detached.

4.
Langmuir ; 37(24): 7457-7463, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34115495

RESUMO

Small particles attach to liquid-fluid interfaces due to capillary forces. The influence of rotation on the capillary force is largely unexplored, despite being relevant whenever particles roll at a liquid-fluid interface or on a moist solid. Here, we demonstrate that due to contact angle hysteresis, a particle needs to overcome a resistive capillary torque to rotate at an interface. We derive a general model for the capillary torque on a spherical particle. The capillary torque is given by M = γRLk(cos ΘR - cos ΘA), where γ is the interfacial tension, R is the radius of the particle, L is the diameter of the contact line, k = 24/π3 is a geometrical constant, and ΘR and ΘA are the receding and advancing contact angles, respectively. The expression for the capillary torque (normalized by the radius of the particle) is equivalent to the expression for the friction force that a drop experiences when moving on a flat surface. Our theory predicts that capillary torque reduces the mobility of wet granular matter and prevents small (nano/micro) particles from rotating when they are in Brownian motion at an interface.

5.
Soft Matter ; 17(7): 1746-1755, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33400749

RESUMO

To understand the removal of particles from surfaces by water drops, we used an inverted laser scanning confocal microscope to image the collision between a water drop and a particle on a flat polydimethylsiloxane (PDMS) surface. The dynamic drop-particle contact line was monitored by fixing the drop directly above the objective lens while moving the sample stage at well-defined speeds (10-500 µm s-1). The lateral force acting on the drop during the collision was measured as a function of speed, using a force sensor mounted on the microscope. Depending on the collision speed, the particle either stays attached at the rear of the drop or detaches from it. We propose a criterion to determine whether the particle remains attached to the drop based on the capillary and resistive forces acting on the particle during the collision. The forces measured when the particle crosses the air-water interface are compared to existing models. We adapted these to account for rolling of the particle. By comparing our experimental measurements with an analytical model for the capillary torque acting on a particle rolling at an interface, we provide detailed insights on the origins of the resistive force acting on the particle when it is pushed or pulled by the drop. A low friction force between the surface and the particle increases the likelihood of particle removal.

6.
Nano Lett ; 20(12): 8508-8515, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33206541

RESUMO

Slippery lubricant-infused surfaces (SLIPS) have shown great promise for anti-frosting and anti-icing. However, small length scales associated with frost dendrites exert immense capillary suction pressure on the lubricant. This pressure depletes the lubricant film and is detrimental to the functionality of SLIPS. To prevent lubricant depletion, we demonstrate that interstitial spacing in SLIPS needs to be kept below those found in frost dendrites. Densely packed nanoparticles create the optimally sized nanointerstitial features in SLIPS (Nano-SLIPS). The capillary pressure stabilizing the lubricant in Nano-SLIPS balances or exceeds the capillary suction pressure by frost dendrites. We term this concept capillary balancing. Three-dimensional spatial analysis via confocal microscopy reveals that lubricants in optimally structured Nano-SLIPS are not affected throughout condensation (0 °C), extreme frosting (-20 °C to -100 °C), and traverse ice-shearing (-10 °C) tests. These surfaces preserve low ice adhesion (10-30 kPa) over 50 icing cycles, demonstrating a design principle for next-generation anti-icing surfaces.

7.
Langmuir ; 36(26): 7236-7245, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32496071

RESUMO

To better understand the wetting of cross-linked polydimethylsiloxane (PDMS), we measured advancing and receding contact angles of sessile water drops on cross-linked PDMS as a function of contact line velocity (up to 100 µm/s). Three types of samples were investigated: pristine PDMS, PDMS where oligomers were removed by toluene treatment, and PDMS with an enriched concentration of oligomers. Depending on the velocity of advancing contact lines and the contact time with water, different modes of wetting were observed: one with a relatively low contact angle hysteresis (Δθ ≈ 10°) and one with a larger hysteresis. We attribute the low hysteresis state, called the lubricated state, to the enrichment of free oligomers at the water-PDMS interface. The enrichment of oligomers is induced by drop contact. The kinetics of the transition to the lubricated state can be described by adaptation theory. PDMS adapts to the presence of water by an enrichment of free oligomers at the interface and a correlated reduction in interfacial tension.

8.
Adv Sci (Weinh) ; : e2403366, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953394

RESUMO

Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical-free and energy-passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When immersed, super-liquid-repellent surfaces form plastrons, which are textured solid topographies with interconnected gas domains. Plastrons exhibit the remarkable ability of capturing bubbles through coalescence. However, the two-step mechanics of plastron-induced bubble coalescence, namely, rupture (initiation and location) and subsequent absorption (propagation and drainage) are not well understood. Here, the influence of 1) topographical feature size and 2) gas fraction on bubble capture dynamics is investigated. Smaller feature sizes accelerate rupture while larger gas fractions markedly improve absorption. Rupture is initiated solely on solid domains and is more probable near the edges of solid features. Yet, rupture time becomes longer as solid fraction increases. This counterintuitive behavior represents unexpected complexities. Upon rupture, the bubble's moving liquid-solid contact line influences its absorption rate and equilibrium state. These findings show the importance of rationally minimizing surface feature sizes and contact line interactions for rapid bubble rupture and absorption. This work provides key design principles for plastron-induced bubble coalescence, inspiring future development of industrially-relevant surfaces for underwater bubble capture.

9.
Adv Colloid Interface Sci ; 287: 102329, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302056

RESUMO

Lubricant-impregnated surfaces are two-component surface coatings. One component, a fluid called the lubricant, is stabilized at a surface by the second component, the scaffold. The scaffold can either be a rough solid or a polymeric network. Drops immiscible with the lubricant, hardly pin on these surfaces. Lubricant-impregnated surfaces have been proposed as candidates for various applications, such as self-cleaning, anti-fouling, and anti-icing. The proposed applications rely on the presence of enough lubricant within the scaffold. Therefore, the quality and functionality of a surface coating are, to a large degree, given by the extent to which it prevents lubricant-depletion. This review summarizes the current findings on lubricant-depletion, lubricant-replenishment, and the resulting understanding of both processes. A multitude of different mechanisms can cause the depletion of lubricant. Lubricant can be taken along by single drops or be sheared off by liquid flowing across. Nano-interstices and scaffolds showing good chemical compatibility with the lubricant can greatly delay lubricant depletion. Often, depletion of lubricant cannot be avoided under dynamic conditions, which warrants lubricant-replenishment strategies. The strategies to replenish lubricant are presented and range from spraying or stimuli-responsive release to built-in reservoirs.

10.
Nat Commun ; 12(1): 5358, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504098

RESUMO

Wet and dry foams are prevalent in many industries, ranging from the food processing and commercial cosmetic sectors to industries such as chemical and oil-refining. Uncontrolled foaming results in product losses, equipment downtime or damage and cleanup costs. To speed up defoaming or enable anti-foaming, liquid oil or hydrophobic particles are usually added. However, such additives may need to be later separated and removed for environmental reasons and product quality. Here, we show that passive defoaming or active anti-foaming is possible simply by the interaction of foam with chemically or morphologically modified surfaces, of which the superamphiphobic variant exhibits superior performance. They significantly improve retraction of highly stable wet foams and prevention of growing dry foams, as quantified for beer and aqueous soap solution as model systems. Microscopic imaging reveals that amphiphobic nano-protrusions directly destabilize contacting foam bubbles, which can favorably vent through air gaps warranted by a Cassie wetting state. This mode of interfacial destabilization offers untapped potential for developing efficient, low-power and sustainable foam and froth management.

11.
ACS Nano ; 14(4): 3836-3846, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32096971

RESUMO

Superamphiphobic surfaces are commonly associated with superior anticontamination and antifouling properties. Visually, this is justified by their ability to easily shed off drops and contaminants. However, on micropillar arrays, tiny droplets are known to remain on pillars' top faces while the drop advances. This raises the question of whether remnants remain even on nanostructured superamphiphobic surfaces. Are superamphiphobic surfaces really self-cleaning? Here we investigate the presence of microdroplet contaminants on three nanostructured superamphiphobic surfaces. After brief contact with liquids having different volatilities and surface tension (water, ethylene glycol, hexadecane, and an ionic liquid), confocal microscopy reveals a "blanket-like" layer of microdroplets remaining on the surface. It appears that the phenomenon is universal. Notably, when placing subsequent drops onto the contaminated surface, they are still able to roll off. However, adhesion forces can gradually increase by up to 3 times after repeated liquid drop contact. Therefore, we conclude that superamphiphobic surfaces do not warrant self-cleaning and anticontamination capabilities at sub-micrometric length scales.

12.
Nat Chem ; 16(4): 479-480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580724
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa