Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 128(45): 14560-70, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17090040

RESUMO

Physicochemical properties of the covalently cross-linked tyrosine-histidine-Cu(B) (Tyr-His-Cu(B)) unit, which is a minimal model complex [M(II)-BIAIPBr]Br (M = Cu(II), Zn(II)) for the Cu(B) site of cytochrome c oxidase, were investigated with steady-state and transient absorption measurements, UV resonance Raman (UVRR) spectroscopy, X-band continuous-wave electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations. The pH dependency of the absorption spectra reveals that the pK(a) of the phenolic hydroxyl is ca. 10 for the Cu(II) model complex (Cu(II)-BIAIP) in the ground state, which is similar to that of p-cresol (tyrosine), contrary to expectations. The bond between Cu(II) and nitrogen of cross-linked imidazole cleaves at pH 4.9. We have successfully obtained UVRR spectra of the phenoxyl radical form of BIAIPs and have assigned bands based on the previously reported isotope shifts of Im-Ph (2-(1-imidazoyl)-4-methylphenol) (Aki, M.; Ogura, T.; Naruta, Y.; Le, T. H.; Sato, T.; Kitagawa, T. J. Phys. Chem. A 2002, 106, 3436-3444) in combination with DFT calculations. The upshifts of the phenoxyl vibrational frequencies for 8a (C-C stretching), 7a' (C-O stretching), and 19a, and the Raman-intensity enhancements of 19b, 8b, and 14 modes indicate that UVRR spectra are highly sensitive to imidazole-phenol covalent linkage. Both transient absorption measurements and EPR spectra suggest that the Tyr-His-Cu(B) unit has only a minor effect on the electronic structure of the phenoxyl radical form, although our experimental results appear to indicate that the cross-linked Tyr radical exhibits no EPR. The role of the Tyr-His-Cu(B) unit in the enzyme is discussed in terms of the obtained spectroscopic parameters of the model complex.


Assuntos
Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Fenóis/química , Análise Espectral/métodos , Ciclização , Modelos Moleculares
2.
J Am Chem Soc ; 125(46): 14103-12, 2003 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-14611247

RESUMO

By using MO calculations based on DFT, absorption, and fluorescence spectroscopy, we have comprehensively studied the low-lying excited singlet states of alpha,omega-diphenylpolyynes (DPY) having 1-6 triple bonds. The a(g) vibrational modes of the C(triple bond)C stretching and of the phenyl ring motion were observed in the fluorescence spectra of diphenylacetylene and 1,4-diphenylbutadiyne. On the other hand, in the fluorescence spectra of the long DPY with the triple-bond number (N) more than two, the phenyl ring motion with a(g) symmetry disappeared and the b(1g) modes of the phenyl ring twisting (approximately 400 cm(-1)) and of the C-H bending (approximately 900 cm(-1)) were detected. The observed fluorescent states of DPY with N < or = 2 and N > or = 3 are assigned to the 1(1)B(1u) (pi(x)pi(x*)) and 1(1)A(u) (pi(x)pi(y*) and/or pi(y)pi(x*)) states, respectively, based on the vibronic structures, the relatively short lifetimes, and the solvatochromic shifts of the fluorescence spectra. Not only the allowed transition of 1(1)B(1u) <-- S(0) but also the forbidden transition of 1(1)A(u) <-- S(0) was detected in the fluorescence excitation spectra of the long DPY with N > or = 3. The low-lying excited state with A(u) symmetry is characteristic in polyyne, which does not exist in polyene. The oscillator strength (f) of the first absorption band in DPY decreases with an increase in N, which is the opposite behavior of the all-trans-alpha,omega-diphenylpolyenes. The N-dependence of the f value is understood by the configuration interaction between the 1(1)B(1u) and 2(1)B(1u) (pi(y)pi(y*)) states, which is consistent with the reduction of the nonlinear optical response of polyyne.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa