RESUMO
Bioaugmentation regimes (i.e., dosage, repetition, and timing) in AD must be optimized to ensure their effectiveness. Although previous studies have investigated these aspects, most have focused exclusively on short-term effects, with some reporting conflicting conclusions. Here, AD experiments of three consecutive repeated batches were conducted to determine the effect of bioaugmentation regimes under ammonium/salt inhibition conditions. A positive correlation between reactor performance and inoculum dosage was confirmed in the first batch, which diminished in subsequent batches for both inhibitors. Moreover, a diminishing marginal effect was observed with repeated inoculum introduction. While the bacterial community largely influenced the reactor performance, the archaeal community exhibited only a minor impact. Prediction of the key enzyme abundances suggested an overall decline in different AD steps. Overall, repeated batch experiments revealed that a homogeneous bacterial community deteriorated the AD process during long-term operation. Thus, a balanced bacterial community is key for efficient methane production.
Assuntos
Compostos de Amônio , Reatores Biológicos , Compostos de Amônio/metabolismo , Anaerobiose , Bactérias/metabolismo , Archaea/metabolismo , Microbiota , Metano/metabolismoRESUMO
Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.