Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 16(12): 2933-2940, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32095804

RESUMO

A novel form of nematic gel (N-gel) wherein bright flower-like domains (BFDs) rich in gelator fibres are embedded in a matrix of liquid crystal (LC) molecules has been reported. These gels which we denote as inverse N-gels are unlike typical N-gels in which the LC is encapsulated within an aggregated network of gelator molecules. The self-organization of the helical gelator fibres within the BFDs leads to the creation of localized toron-like structures that are topologically protected due to their skyrmion director profile. Optical and confocal microscopy have been used to deduce the LC director configuration, in order to understand possible intermolecular interactions that can lead to the formation of the twisted structures and the inverse N-gels.

2.
Langmuir ; 35(34): 11200-11209, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31343890

RESUMO

Liquid crystal (LC) blue phases (BPs) have gained relevance because of their potential applicability as tunable photonic band gap materials. However, their narrow temperature range often restricts technical usage. Doping with an LC made of achiral bent-core (BC) molecules is one of the strategies employed to increase BP stability. It is now shown that mixing a BCLC exhibiting the polarization-modulated lamellar B7 phase, with a calamitic chiral LC made of rod-like (R) molecules, enhances the BP range considerably. The special feature in this system is the spontaneous expulsion of clusters of B7 fibers in the chiral nematic (N*) phase occurring below the BPs. This gives a clear indication that islands rich in BC molecules lie interspersed between the R molecules. Based on several experimental studies, it is shown that the BP stability may be attributed to an interplay of conformational and intrinsic chirality of the BC and R molecules across the interface of these islands. This study provides new insights from a molecular point of view and provides a novel technique for designing stable-induced BPs. The additional novelty is the occurrence of a phase transition within the fibers. Further, the electro-responsive fibers may also have a potential to form new materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa