Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 1858-1866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116242

RESUMO

Endohedral metallofullerenes have excellent redox properties, which can be used to vary their reactivity to certain classes of molecules, such as alkyl halides. In this study, the thermal reaction of the La@C2v-C82 anion with benzyl bromide derivatives 1 at 110 °C afforded single-bonded adducts 2-5 with high regioselectivity. The products were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and visible-near infrared spectroscopy. The reaction of La@C2v-C82 with alkyl halides using the same conditions showed no consumption of La@C2v-C82, indicating that the reactivity of La@C2v-C82 toward alkyl halides was effectively increased by one-electron reduction. Single-crystal X-ray diffraction analysis of the single-bonded adduct 3a revealed the addition site of the p-methoxybenzyl group on La@C2v-C82. Theoretical calculations indicated that the addition site carbons in neutral La@C2v-C82 have high spin density, whereas those in the La@C2v-C82 anion do not have high charge densities. Thus, the reaction is believed to occur via electron transfer, followed by the radical coupling of La@C2v-C82 and benzyl radicals, rather than by bimolecular nucleophilic substitution reaction of La@C2v-C82 anion with 1.

2.
Phys Chem Chem Phys ; 22(8): 4823-4831, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32068766

RESUMO

The successful synthesis and isolation of cyclo-C18 in experiments is a ground-breaking development in carbon rings. Herein, we studied the thermodynamic stabilities of cyclo-Cn (4 ≤ n ≤ 34) with hybrid density functional theory. When n = 4N + 2 (N is an integer), cyclo-Cn were thermodynamically stable. In particular, cyclo-C10 and cyclo-C14 were more thermodynamically, kinetically, dynamically, and optically stable compared with the acknowledged cyclo-C18, and were potential candidates for zero-dimensional carbon rings. Cyclo-Cn (n = 10 and 14) show similar molecular semiconductor characteristics to the acknowledged cyclo-C18. The carbon atoms were sp hybridized in cyclo-C10, cyclo-C14, and cyclo-C18. Cyclo-C14 and cyclo-C18 had alternating abnormal single and triple bonds, but cyclo-C10 had equal bonds. Cyclo-C10, cyclo-C14, and cyclo-C18 with large aromaticities had out-of-plane and in-plane π systems, which were perpendicular to each other. The number of π electrons in the out-of-plane and in-plane π systems, respectively, followed the standard Hückel aromaticity rule. Simulated UV-vis-NIR spectra indicated similar electronic structures of cyclo-C14 and cyclo-C18.

3.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784953

RESUMO

This overview explains some new aspects of chemical functionalization of endohedral metallofullerenes (EMFs) that have been unveiled in recent years. After differences in chemical reactivity between EMFs and the corresponding empty fullerenes are discussed, cage-opening reactions of EMFs are examined. Then, the selective bisfunctionalization of EMFs is explained. Finally, single-bonding derivatization of EMFs is addressed. The diversity and applicability of the chemical functionalization of endohedral metallofullerenes are presented to readers worldwide.


Assuntos
Fulerenos/química , Carbono/química , Reação de Cicloadição , Elementos da Série dos Lantanídeos/química , Modelos Químicos , Teoria Quântica
4.
J Comput Chem ; 40(31): 2730-2738, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31433074

RESUMO

The thermodynamic and dynamic stabilities of Sc3 X@C80 (X = C, N, and O) are explored via density functional theory combined with statistical thermodynamic analysis and ab initio molecular dynamics. It is the first time to comprehensively consider the effect of nonmetal atoms on trimetallic endohedral clusterfullerenes. Relative to Sc3 X@Ih (31924)-C80 (X = N and O) with general six-electron transfer, an intriguing electronic structure of unexplored Sc3 C@D5h (31923)-C80 with thermodynamic and dynamic stabilities is clearly disclosed. Natural bond orbitals and charge decomposition analysis simultaneously suggest that one unpaired electron appears on the cage for neutral Sc3 C@D5h (31923)-C80 , which could be prospectively stabilized by effective exohedral derivatization and ionization in the future. Moreover, isoelectronic endohedral clusterfullerenes, (Sc3 C@C80 )- , Sc3 N@C80 , and (Sc3 O@C80 )+ , are also uniquely taken into account. The geometries, electronic structures, reactivities, and reactive sites of isoelectronic species are examined, and it turns out that all the three isoelectronic species would rather electrophilic than nucleophilic reactions. © 2019 Wiley Periodicals, Inc.

5.
Phys Chem Chem Phys ; 20(21): 14671-14678, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29770408

RESUMO

Recent reports pointed out that the formal La2C2n (2n = 92-106) series can exist stably as carbide cluster metallofullerenes (CCMFs) La2C2@C2n-2 with their successful crystallographic characterization. Herein, we suggest that the corresponding dimetallofullerenes (di-EMFs) La2@C2n possessing the lowest potential energies are also plausible candidates because of their favorability in statistical thermodynamics. This can be demonstrated in our present theoretical investigations on La2C94 and previously reported other La2C2n (2n = 92, 96-100) series by density functional theory calculations and statistical mechanics analyses. Nevertheless, it was noted that these thermodynamically favorable La2@C2n isomers turned out to be kinetically unstable radicals due to the presence of one unpaired electron on the carbon cage, making them missing fullerenes and difficult to be captured in their pristine forms, except for the experimentally obtained La2@D5(450)-C100 that has no unpaired electron. Such kinetic instability could be modified by electron reduction (the products were denoted as [La2@C2n]-) or other similar exterior functionalization with ˙CF3 and benzyl radicals, resulting in La-La bonded and paramagnetic species capable of being captured. On the basis of these approaches, carbon cages D3(85)-C92, Cs(120)-C94, D2(186)-C96, and C2(157)-C96 are predicted to be feasibly captured as both pristine CCMF species and electron reduced di-EMF derivatives.

6.
Angew Chem Int Ed Engl ; 57(41): 13394-13405, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665229

RESUMO

The awesome allotropy of carbon yields innumerable topologically possible cage structures of molecular carbon. This field is also related to endohedral metallofullerenes constructed by metal-atom encapsulation. Stable and soluble empty fullerenes and endohedral metallofullerenes are available in pure form in macroscopic amounts from carbon arc production or other physical processes followed by extraction and subsequent chromatographic separation. However, many other unidentified fullerene species, which must be reactive and insoluble in their pristine forms, remain in soot. These "missing" species must have extremely small HOMO-LUMO gaps and may have unconventional cage structures. Recent progress in this field has demonstrated that reactive fullerenes can be salvaged by exohedral derivatization, which can stabilize the reactive carbon cages. This concept provides a means of preparing macroscopic amounts of unconventional fullerenes as their derivatives.

7.
Angew Chem Int Ed Engl ; 57(13): 3499-3503, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29411488

RESUMO

The catalytic activation of small neutral molecules followed by the formation of C-C bonds is a highly important method to increase the complexity and/or value of simple starting materials. Reported is an isolable digermyne, a compound with a Ge≡Ge bond, which acts as a precatalyst for the cyclotrimerization of terminal arylacetylenes to afford the corresponding 1,2,4-triarylbenzenes with absolute regioselectivity. The results demonstrate that bespoke main-group-element compounds can catalytically activate and transform small neutral organic molecules and induce the formation of C-C bonds.

8.
J Comput Chem ; 38(26): 2241-2247, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28718989

RESUMO

Although the existence of Stone-Wales (5-7) defect at graphene edge has been clarified experimentally, theoretical study on the formation mechanism is still imperfect. In particular, the regioselectivity of multistep reactions at edge (self-reconstruction and growth with foreign carbon feedstock) is essential to understand the kinetic behavior of reactive boundaries but investigations are still lacking. Herein, by using finite-sized models, multistep reconstructions and carbon dimer additions of a bared zigzag edge are introduced using density functional theory calculations. The zigzag to 5-7 transformation is proved as a site-selective process to generate alternating 5-7 pairs sequentially and the first step with largest barrier is suggested as the rate-determining step. Conversely, successive C2 insertions on the active edge are calculated to elucidate the formation of 5-7 edge during graphene growth. A metastable intermediate with a triple sequentially fused pentagon fragment is proved as the key structure for 5-7 edge formation. © 2017 Wiley Periodicals, Inc.

9.
J Comput Chem ; 38(10): 730-739, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28164347

RESUMO

Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc.

10.
Chemistry ; 23(36): 8694-8702, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28337803

RESUMO

Bis(sulfane)carbon(0) (BSC; Ph2 S→C←SPh2 (1)) is successfully synthesized by deprotonation of the corresponding protonated salt 1⋅HTfO. The diprotonated salt 1⋅(HTfO)2 as the starting material can be also easily accessed by the deimination of iminosulfane(sulfane)carbon(0) (iSSC)⋅HBF4 . Density functional theory calculations revealed the peculiar electronic structure of 1, which has two lone pairs of electrons at the central carbon atom. The largest proton affinities (PA(1): 297.5 kcal mol-1 ; PA(2): 183.7 kcal mol-1 ) and the highest energy levels of the HOMOs (HOMO: -4.89 eV; HOMO-1: -5.02 eV) for 1 among the two-sulfur-stabilized carbones clearly indicate the strong donor ability of carbon center stabilized by two SII ligands. The donating ability of these lone pairs of electrons is demonstrated by the C-diaurated and C-proton-aurated complexes, which provide the first experimental evidence for two-sulfurstabilized carbones behaving as four-electron donors. Furthermore, the syntheses and application of AgI carbone complexes as carbone transfer agents are also reported.

11.
Chemistry ; 23(8): 1789-1794, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27778399

RESUMO

Alkylated single-walled carbon nanotubes (SWNTs) have been thermally treated to determine the influence of substituents and the degree of functionalization on their thermal stability and photoluminescence (PL) properties. Alkylated SWNTs were prepared by treating SWNTs with sodium naphthalenide and alkyl bromide. The defunctionalization of the alkylated SWNTs was monitored by absorption and Raman spectra. Selective recovery of the characteristic absorption and radial breathing mode peaks was observed during the thermal treatment, which indicates that the thermal stability of the alkylated SWNTs decreases with increases in SWNT diameter and degree of functionalization. n-Butylated and phenethylated SWNTs showed higher thermal stability than sec-butylated and benzylated SWNTs for a similar degree of functionalization, respectively. The diameter selectivity and effect of substituents on the thermal elimination reaction were confirmed by density functional theory. In addition, it was shown that the initial degree of functionalization of the alkylated SWNTs, with the alkyl group and degree of functionalization being kept constant after thermal treatment, strongly affects their PL properties; Stokes shift, and PL peak intensity.

12.
Chemistry ; 23(27): 6552-6561, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28145046

RESUMO

Additions of adamantylidene (Ad) to M3 N@Ih -C80 (M=Sc, Lu) and Sc3 N@D5h -C80 have been accomplished by photochemical reactions with 2-adamantyl-2,3'-[3H]-diazirine (1). In M3 N@Ih -C80 , the addition led to rupture of the [6,6]- or [5,6]-bonds of the Ih -C80 cage, forming the [6,6]-open fulleroid as the major isomer and the [5,6]-open fulleroid as the minor isomer. In Sc3 N@D5h -C80 , the addition also proceeded regioselectively to yield three major isomeric Ad mono-adducts, despite the fact that there are nine types of C-C bonds in the D5h -C80 cage. The molecular structures of the seven Ad mono-adducts, including the positions of the encaged trimetallic nitride clusters, have been unambiguously determined through single-crystal XRD analyses. Furthermore, results have shown that stepwise addition of Ad to Lu3 N@Ih -C80 affords several Ad bis-adducts, two of which have been isolated and characterized. The X-ray structure of one bis-adduct clearly revealed that the second Ad addition took place at a [6,6]-bond close to an endohedral metal atom. Theoretical calculations have also been performed to rationalize the regioselectivity.

13.
J Org Chem ; 82(13): 6541-6549, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28590126

RESUMO

Recently, the oxidative functionalization of double-fused-pentagon (DFP)-containing chlorofullerenes #271C50Cl10 and #913C56Cl10 was carried out, resulting in two monoepoxides with the oxygen atom added at the ortho site of pentalene on the DFP moiety. To uncover the reactivity of isolated-pentagon-rule violating fullerenes upon oxidation, two possible formation processes (ozone molecule and oxygen radical served as oxidation reagents) of these two oxides were systematically investigated through density functional theory calculations. For the ozone oxidation, two possible pathways were explored, and the results indicate that the biradical mechanism Pathos-RACDP is kinetically more favorable than Pathos-RABP, where R, A, and P represent reactants, ozonide intermediates, and oxidation products and B, C, and D represent another three oxygen-containing intermediates. The products obtained by ozone oxidation ([6,6]-55-closed epoxides P-C3-C29 for #271C50Cl10 and P-C42-C43 for #913C56Cl10 with oxygen atom added at the shortest and highest HOMO-contribution bonds) are consistent with experimental observations. However, the oxygen radical additions on these two chlorofullerenes favor generation of the [5,6]-66-open oxidoannulene adducts P-C3-C2 and P-C42-C54, respectively. Subsequent analyses of their geometrical features and structural stabilities suggest that these two oxidoannulene adducts are energetically unfavorable and could be converted to more stable epoxides mentioned above by undergoing a pirouette-type transition state. In these two diverse oxidation procedures, the favorable C-C bonds for ozone attacking and C atoms for oxygen-adsorption are rationalized in terms of their bond lengths and HOMO contributions as well as pyramidalization angles.

14.
Inorg Chem ; 56(12): 6890-6896, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28548829

RESUMO

We introduce monotitanium-based endohedral metallofullerenes (EMFs) using density functional theory calculations. Isomeric C64 fullerenes are initially employed as hosts, and Ti@C64 species show novel features on the electronic structures. Energetically, the preference of titanium residing on triple-fused-pentagon subunits is proposed in theory. More importantly, different from current knowledge on mono-EMFs, electron transfer between titanium and carbon cages is not unified but is essentially dependent on the pentagon distribution of the binding sites, giving rise to variations of the cationic titanium of Ti@C64. Such selective electron-transfer character is extended to the study of the encapsulation of other neighboring metal atoms (i.e., calcium and scandium). Because of their different capabilities to accept d electrons, fullerene cages with distinct fused-pentagon motifs show selective metal encapsulation characters. In addition, some other fullerenes (C44-C48 and C82) are selected as hosts to study the electron-transfer behavior of titanium in smaller fullerenes and larger systems without pentagon adjacency.

15.
Phys Chem Chem Phys ; 19(31): 20773-20777, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28740989

RESUMO

Binding of Li+ to quadrannulene and its influence on buckybowl functionalization are introduced. The concave-trapped Li+ acts as a Lewis acid and the rate of Diels-Alder cycloaddition is enhanced 108 times. A sandwiched bowl-Li+-bowl structure is stabilized via concave-cation-convex interactions, indicating the promoted role of Li+ in buckybowl assembly.

16.
Molecules ; 22(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708116

RESUMO

Exohedral derivatization of endohedral metallofullerenes (EMFs) has been exploited as a useful method for characterizing the structural and chemical properties of EMFs, and for functionalizing them for potential applications. The introduction of heteroatoms, such as electropositive silicon atoms, to fullerene cages is a novel functionalization method that remarkably affects the electronic characteristics of fullerenes. This review comprehensively describes the results of the reactions of monometallofullerene, dimetallofullerene, and trimetallic nitride template EMFs with disilirane, silirane, silylene, and digermirane, which afforded the corresponding silylated and germylated fullerenes. Several examples emphasize that exohedral functionalization regulates the dynamic behaviors of the encapsulated metal atoms and clusters in the fullerene cages. The electronic effects of silyl and germyl groups are represented by comparing the redox properties of silylated and germylated EMFs with those of other EMFs derivatized with carbon-atom-based functional groups.


Assuntos
Carbono/química , Fulerenos/química , Germânio/química , Metais/química , Silício/química , Cinética , Nanopartículas Metálicas/química , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
17.
Molecules ; 22(7)2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-28672819

RESUMO

Relative concentrations of six isomeric Eu@C 72 -one based on the IPR C 72 cage (i.e., obeying the isolated-pentagon rule, IPR), two cages with a pentagon-pentagon junction (symmetries C 2 and C 2 v ), a cage with one heptagon, a cage with two heptagons, and a cage with two pentagon-pentagon fusions-are DFT computed using the Gibbs energy in a broad temperature interval. It is shown that the two non-IPR isomers with one pentagon-pentagon junction prevail at any relevant temperature and exhibit comparable populations. The IPR-satisfying structure is disfavored by both energy and entropy.


Assuntos
Fulerenos/química , Isomerismo , Modelos Moleculares , Temperatura
18.
Molecules ; 22(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531116

RESUMO

Photochemical carbosilylation of Lu3N@Ih-C80 was performed using siliranes (silacyclopropanes) to afford the corresponding [5,6]- and [6,6]-adducts. Electrochemical studies indicated that the redox potentials of the carbosilylated derivatives were shifted cathodically in comparison with those of the [5,6]-pyrrolidino adducts. The electronic effect of the silirane addends on Lu3N@Ih-C80 was verified on the basis of density functional theory calculations.


Assuntos
Ciclopropanos/química , Elétrons , Fulerenos/química , Silanos/química , Técnicas Eletroquímicas , Luz , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Pirrolidinas/química
19.
Angew Chem Int Ed Engl ; 56(23): 6488-6491, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28464385

RESUMO

To investigate the intrinsic reactivity of atomic nitrogen, which had previously been accomplished only by examining its decay in the gas phase using special equipment, a nitrogen atom was inserted into a series of molecule-encapsulating C60 and C70 fullerenes. Among the studied endofullerenes, H2 @C70 was able to encapsulate an additional nitrogen atom within the fullerene cage under radiofrequency plasma conditions. The product was analyzed by ESR spectroscopy and mass spectrometry in solution, which revealed that the nitrogen atom with a quartet ground state does not react but weakly interact with the H2 molecule, thus demonstrating the utility of such fullerenes as "nanoflasks".

20.
J Am Chem Soc ; 138(25): 8000-6, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27314267

RESUMO

Location recognition at the molecular scale provides valuable information about the nature of functional molecular materials. This study presents a novel location sensing approach based on an endohedral metallofullerene, Ce@C82, using its anisotropic magnetic properties, which lead to temperature-dependent paramagnetic shifts in (1)H NMR spectra. Five site-isomers of Ce@C82CH2-3,5-C6H3Me2 were synthesized to demonstrate the spatial sensing ability of Ce@C82. Single-crystal structures, absorption spectra, and density functional theory calculations were used to select the plausible addition positions in the radical coupling reaction, which preferentially happens on the carbon atoms with high electron density of the singly occupied molecular orbital (SOMO) and positive charge. Temperature-dependent NMR measurements demonstrated unique paramagnetic shifts of the (1)H peaks, which were derived from the anisotropic magnetism of the f-electron in the Ce atom of the isomers. It was found that the magnetic anisotropy axes can be easily predicted by theoretical calculations using the Gaussian 09 package. Further analysis revealed that the temperature-dependent trend in the shifts is clearly predictable from the distance and relative position of the proton from the Ce atom. Hence, the Ce-encapsulated metallofullerene Ce@C82 can provide spatial location information about nearby atoms through the temperature-dependent paramagnetic shifts of its NMR signals. It can act as a molecular probe for location sensing by utilizing the anisotropic magnetism of the encapsulated Ce atom. The potentially low toxicity and stability of the endohedral fullerene would make Ce@C82 suitable for applications in biology and material science.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa