Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489379

RESUMO

The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Junções Comunicantes/fisiologia , Caenorhabditis elegans/fisiologia , Neuroimagem , Modelos Neurológicos
2.
Microorganisms ; 11(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512850

RESUMO

The effects of lipopolysaccharide (LPS) from Rhodobacter sphaeroides, a purple non-sulfur bacterium (PNSB), on the gene expression of the root of rice (Oryza sativa) were investigated by next generation sequencing (NGS) RNA-seq analysis. The rice seeds were germinated on agar plates containing 10 pg/mL of LPS from Rhodobacter sphaeroides NBRC 12203 (type culture). Three days after germination, RNA samples were extracted from the roots and analyzed by RNA-seq. The effects of dead (killed) PNSB cells of R. sphaeroides NBRC 12203T at the concentration of 101 cfu/mL (ca. 50 pg cell dry weight/mL) were also examined. Clean reads of NGS were mapped to rice genome (number of transcript ID: 44785), and differentially expressed genes were analyzed by DEGs. As a result of DEG analysis, 300 and 128 genes, and 86 and 8 genes were significantly up- and down-regulated by LPS and dead cells of PNSB, respectively. The plot of logFC (fold change) values of the up-regulated genes of LPS and PNSB dead cells showed a significant positive relationship (r2 = 0.6333, p < 0.0001), indicating that most of the effects of dead cell were attributed to those of LPS. Many genes related to tolerance against biotic (fungal and bacterial pathogens) and abiotic (cold, drought, and high salinity) stresses were up-regulated, and the most strikingly up-regulated genes were those involved in the jasmonate signaling pathway, and the genes of chalcone synthase isozymes, indicating that PNSB induced defense response against biotic and abiotic stresses via the jasmonate signaling pathway, despite the non-pathogenicity of PNSB.

3.
Microorganisms ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36363789

RESUMO

The effects of seed bio-priming (seed soaking) with purple non-sulfur bacteria (PNSB) on the grain productivity and root development of rice were examined by a field study and laboratory experiments, respectively. Two PNSB strains, Rhodopseudomonas sp. Tsuru2 and Rhodobacter sp. Tsuru3, isolated from the paddy field of the study site were used for seed bio-priming. For seed bio-priming in the field study, the rice seeds were soaked for 1 day in water containing a 1 × 105 colony forming unit (cfu)/mL of PNSB cells, and the rice grain productivities at the harvest time were 420, 462 and 504 kg/are for the control, strain Tsuru2-primed, and strain Tsuru3-primed seeds, respectively. The effects of seed priming on the root development were examined with cell pot cultivation experiments for 2 weeks. The total root length, root surface area, number of tips and forks were evaluated with WinRhizo, an image analysis system, and strains Tsuru2- and Tsuru3-primed seeds showed better root development than the control seeds. The effects of seed priming with the dead (killed) PNSB cells were also examined, and the seed priming with the dead cells was also effective, indicating that the effects were attributed to some cellular components. We expected the lipopolysaccharide (LPS) of PNSB as the effective component of PNSB and found that seed priming with LPS of Rhodobacter sphaeroides NBRC 12203 (type culture) at the concentrations of 5 ng/mL and 50 ng/mL enhanced the root development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa