Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Ther ; 31(2): 420-434, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245128

RESUMO

An estimated 100,000 patients each year in the United States suffer severe disability from bone defects that fail to heal, a condition where bone-regenerative therapies could provide substantial clinical benefits. Although recombinant human bone morphogenetic protein-2 (rhBMP2) is an osteogenic growth factor that is clinically approved for this purpose, it is only effective when used at exceedingly high doses that incur substantial costs, induce severe inflammation, produce adverse side effects, and form morphologically abnormal bone. Using a validated rat femoral segmental defect model, we show that bone formed in response to clinically relevant doses of rhBMP2 is accompanied by elevated expression of interleukin-1 (IL-1). Local delivery of cDNA encoding the IL-1 receptor antagonist (IL-1Ra) achieved bridging of segmental, critical size defects in bone with a 90% lower dose of rhBMP2. Unlike use of high-dose rhBMP2, bone formation in the presence of IL-1Ra occurred via the native process of endochondral ossification, resulting in improved quality without sacrificing the mechanical properties of the regenerated bone. Our results demonstrate that local immunomodulation may permit effective use of growth factors at lower doses to recapitulate more precisely the native biology of healing, leading to higher-quality tissue regeneration.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Osteogênese , Humanos , Ratos , Animais , Osteogênese/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Regeneração Óssea/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia
2.
Adv Exp Med Biol ; 1402: 95-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052849

RESUMO

Delivering genes to chondrocytes offers new possibilities both clinically, for treating conditions that affect cartilage, and in the laboratory, for studying the biology of chondrocytes. Advances in gene therapy have created a number of different viral and non-viral vectors for this purpose. These vectors may be deployed in an ex vivo fashion, where chondrocytes are genetically modified outside the body, or by in vivo delivery where the vector is introduced directly into the body; in the case of articular and meniscal cartilage in vivo delivery is typically by intra-articular injection. Ex vivo delivery is favored in strategies for enhancing cartilage repair as these can be piggy-backed on existing cell-based technologies, such as autologous chondrocyte implantation, or used in conjunction with marrow-stimulating techniques such as microfracture. In vivo delivery to articular chondrocytes has proved more difficult, because the dense, anionic, extra-cellular matrix of cartilage limits access to the chondrocytes embedded within it. As Grodzinsky and colleagues have shown, the matrix imposes strict limits on the size and charge of particles able to diffuse through the entire depth of articular cartilage. Empirical observations suggest that the larger viral vectors, such as adenovirus (~100 nm), are unable to transduce chondrocytes in situ following intra-articular injection. However, adeno-associated virus (AAV; ~25 nm) is able to do so in horse joints. AAV is presently in clinical trials for arthritis gene therapy, and it will be interesting to see whether human chondrocytes are also transduced throughout the depth of cartilage by AAV following a single intra-articular injection. Viral vectors have been used to deliver genes to the intervertebral disk but there has been little research on gene transfer to chondrocytes in other cartilaginous tissues such as nasal, auricular or tracheal cartilage.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Animais , Cavalos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Injeções Intra-Articulares
3.
Clin J Sport Med ; 31(2): 113-119, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30747746

RESUMO

OBJECTIVE: Athletes who return to sport after anterior cruciate ligament reconstruction (ACLR) demonstrate persistent biomechanical and neuromuscular deficits of the knee. There is limited evidence on what effect a neuromuscular training (NMT) program has on knee biomechanics in a cohort of athletes with ACLR. Therefore, the primary aim of this study was to quantify the effect of an NMT program on knee biomechanics in a cohort of ACLR athletes. Second, the post-training knee biomechanics were compared between the cohort of ACLR and control athletes. DESIGN: Cohort study. SETTING: Controlled laboratory setting. PARTICIPANTS: Eighteen athletes with ACLR and 10 control athletes. INTERVENTIONS: Neuromuscular training. MAIN OUTCOME MEASURES: Knee kinematics and kinetics during a double-limb jump-landing task. RESULTS: There were no significant interactions (P > 0.05) observed for the athletes with ACLR. However, there was a significant main effect of biomechanics testing session (P < 0.05) for knee flexion angle and moments; athletes with ACLR demonstrated greater knee flexion angle and lower knee flexion moment during the post-training biomechanics testing session. Post-training comparison between the ACLR and control athletes demonstrated no significant interactions (P > 0.05) between the groups. There was a significant main effect of group (P < 0.05) for knee frontal angle, as athletes with ACLR landed with greater knee adduction than the control athletes. CONCLUSIONS: Significant improvements in knee sagittal plane biomechanical measures were observed after the NMT program by the athletes with ACLR. In addition, post-training comparison of the ACLR and control groups demonstrates comparable knee biomechanics.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Terapia por Exercício/métodos , Joelho/fisiopatologia , Adolescente , Fenômenos Biomecânicos , Teste de Esforço , Humanos , Movimento , Volta ao Esporte , Adulto Jovem
4.
Clin J Sport Med ; 31(6): e347-e353, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31842056

RESUMO

OBJECTIVE: Faulty neuromuscular and biomechanical deficits of the knee are nearly ubiquitous in athletes after anterior cruciate ligament (ACL) reconstruction (ACLR). Knee biomechanical deficits are directly associated with an increased risk of second ACL injury, which typically occurs during a sports-related movement on a single limb. To date, the biomechanical effects of a neuromuscular training (NMT) program on knee biomechanics during a single-leg landing task have not been investigated. DESIGN: Prospective Cohort Study. SETTING: Controlled laboratory setting. PARTICIPANTS: Eighteen ACLR and 10 control athletes. INTERVENTIONS: Neuromuscular training. MAIN OUTCOME MEASURES: Knee kinematics and kinetics. RESULTS: There were no significant interactions of session and limb (P > 0.05) for the athletes with ACLR after training. However, there were several significant main effects of session (P < 0.05) for knee kinematics and kinetics during the single-leg landing task. After training, the athletes with ACLR landed with greater knee flexion angles, decreased knee abduction angles, increased knee flexion range of motion, and decreased knee excursion. Also, the ACLR athletes landed with lower knee flexion moments, greater knee adduction moments, and lower peak vertical ground reaction force. Post-training comparison of the ACLR and control cohorts found no significant interactions of group and limb (P > 0.05) and only a significant main effect of group (P < 0.05) for frontal plane knee angle at initial contact. The athletes with ACLR landed with greater knee adduction angles than the control group. CONCLUSIONS: Deficits in knee biomechanics that are associated with an increased risk of ACL injury are attenuated after completion of this NMT program.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Atletas , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Perna (Membro) , Estudos Prospectivos
5.
Am J Sports Med ; 52(9): 2407-2414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312085

RESUMO

BACKGROUND: Matrix-induced autologous chondrocyte implantation (MACI) is an established cell-based therapy for the treatment of chondral defects of the knee. As long-term outcomes are now being reported in the literature, it is important to systematically review available evidence to better inform clinical practice. PURPOSE: To report (1) subjective patient-reported outcomes (PROs) and (2) the rate of graft failure, reoperation, and progression to total knee arthroplasty (TKA) after undergoing MACI of the knee at a minimum 10-year follow-up. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: A comprehensive search of Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; and Scopus from 2008 to September 15, 2022, was conducted in the English language. Study eligibility criteria included (1) full-text articles in the English language, (2) patients undergoing a MACI within the knee, (3) clinical outcomes reported, and (4) a minimum 10-year follow-up. RESULTS: In total, 168 patients (99 male, 69 female; mean age, 37 years [range, 15-63 years]; mean body mass index, 26.2 [range, 18.6-39.4]) representing 188 treated chondral defects at a minimum 10-year follow-up after MACI were included in this review. Significant and durable long-term improvements were observed across multiple PRO measures. Follow-up magnetic resonance imaging (MRI), when performed, also demonstrated satisfactory defect fill and an intact graft in the majority of patients. The all-cause reoperation rate was 9.0%, with an overall 7.4% rate of progression to TKA at 10 to 17 years of follow-up. CONCLUSION: At a minimum 10-year follow-up, patients undergoing MACI for knee chondral defects demonstrated significant and durable improvements in PROs, satisfactory defect fill on MRI-based assessment, and low rates of reoperation and TKA. These data support the use of MACI as a long-term treatment of focal cartilage defects of the knee.


Assuntos
Condrócitos , Reoperação , Transplante Autólogo , Humanos , Condrócitos/transplante , Reoperação/estatística & dados numéricos , Medidas de Resultados Relatados pelo Paciente , Articulação do Joelho/cirurgia , Artroplastia do Joelho , Resultado do Tratamento
6.
Am J Sports Med ; 52(8): 2148-2158, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38333917

RESUMO

BACKGROUND: Hip arthroscopy in patients with borderline hip dysplasia has satisfactory outcomes at short-term follow-up; however, the data on midterm outcomes are inconsistent, and failure rates are high in some studies, limiting understanding of the role and utility of hip arthroscopy in this patient cohort. PURPOSE: To provide an up-to-date, evidence-based review of the clinical outcomes of primary hip arthroscopy in patients with frank or borderline hip dysplasia at ≥5-year follow-up and report the failure rate and progression to total hip arthroplasty in this cohort. STUDY DESIGN: Systematic review; Level of evidence, 4. METHODS: A comprehensive literature search was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were included if they evaluated outcomes of primary hip arthroscopy in patients with lateral center-edge angle (LCEA) <25° at ≥5-year follow-up. Risk of bias assessment was performed using the methodological index for non-randomized studies scoring system. Level of evidence was determined using criteria from the Oxford Centre for Evidence-Based Medicine. RESULTS: Nine studies were included in this review. Patients with LCEA <25° demonstrated satisfactory clinical outcomes, high patient satisfaction, and significant postoperative improvements in patient-reported outcomes (PROs) at follow-up ranging from a ≥5 to 10 years. Studies comparing patients with dysplasia to those without did not demonstrate significant differences in preoperative, postoperative, or delta PROs or in failure, reoperation, or revision rates. There was no overall significant correlation between outcomes and LCEA stratification. CONCLUSION: Hip arthroscopy in carefully selected patients with LCEA <25° can be successful at mid- to long-term follow-up and may provide clinical outcomes and failure rates comparable with patients with normal LCEA, understanding that this is a singular, 2-dimensional radiographic measure that does not differentiate instability from impingement or combinations thereof, warranting future studies delineating these differences. These findings suggest that hip dysplasia may not be an absolute contraindication for isolated hip arthroscopy and may serve as a viable intervention with consideration of staged future periacetabular osteotomy (PAO). Importantly, this review does not suggest that hip arthroscopy alters the natural history of dysplasia; therefore, patients with dysplasia should be counseled on the potential utility of PAO by appropriate hip preservation specialists.


Assuntos
Artroscopia , Humanos , Artroscopia/métodos , Luxação do Quadril/cirurgia , Acetábulo/cirurgia , Artroplastia de Quadril , Seguimentos , Resultado do Tratamento
7.
Methods Mol Biol ; 2598: 289-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36355299

RESUMO

Viral gene transfer, known as transduction, is a powerful research tool for studying the biology of chondrocytes in novel ways and also a technology enabling the use of gene therapy for regenerating cartilage and treating diseases that affect cartilage, such as osteoarthritis. Adenovirus, retrovirus, lentivirus, and adeno-associated virus (AAV) are most commonly used to transduce chondrocytes. Although AAV is able to transduce chondrocytes in situ by intra-articular injection, chondrocytes are most commonly transduced in monolayer culture using the four vectors mentioned above. Protocols for achieving this are described, along with a discussion of the variables that can influence transduction efficiency.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/fisiologia , Transdução Genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Dependovirus/genética , Terapia Genética/métodos , Genes Virais
8.
bioRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986862

RESUMO

Osteoarthritis (OA) is a degenerative joint disease and a leading cause of disability worldwide. Aging is a major risk factor for OA, but the specific mechanisms underlying this connection remain unclear. Although chondrocytes rarely divide in adult articular cartilage, they undergo replicative senescence in vitro which provides an opportunity to study changes related to aging under controlled laboratory conditions. In this pilot study, we performed bulk RNA sequencing on early- and late-passage human articular chondrocytes to identify transcriptomic changes associated with cellular aging. Chondrocytes were isolated from the articular cartilage of three donors, two with OA (age 70-80 years) and one with healthy cartilage (age 26 years). Chondrocytes were serially passaged until replicative senescence and RNA extracted from early- and late-passage cells. Principal component analysis of all genes showed clear separation between early- and late-passage chondrocytes, indicating substantial age-related differences in gene expression. Differentially expressed genes (DEGs) analysis confirmed distinct transcriptomic profiles between early- and late-passage chondrocytes. Hierarchical clustering revealed contrasting expression patterns between the two isolates from osteoarthritic samples and the healthy sample. Focused analysis of DEGs on transcripts associated with turnover of the extra-cellular matrix and the senescence-associated secretory phenotype (SASP) showed consistent downregulation of Col2A1 and ACAN, and upregulation of MMP19, ADAMTS4, and ADAMTS8 in late passage chondrocytes across all samples. SASP components including IL-1α, IL-1ß, IL-6, IL-7, p16INK4A (CDKN2A) and CCL2 demonstrated significant upregulation in late passage chondrocytes originally isolated from OA samples. Pathway analysis between sexes with OA revealed shared pathways such as extracellular matrix (ECM) organization, collagen formation, skeletal and muscle development, and nervous system development. Sex-specific differences were observed, with males showing distinctions in ECM organization, regulation of the cell cycle process as well as neuron differentiation. In contrast, females exhibited unique variations in the regulation of the cell cycle process, DNA metabolic process, and the PID-PLK1 pathway.

9.
J Orthop Res ; 41(9): 1934-1944, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850029

RESUMO

This study defined and compared the course of native, impaired and growth factor-stimulated bone regeneration in a rat femoral defect model. A mid-diaphyseal defect with rigid internal fixation was surgically created in the right femur of male Fischer rats and serially analyzed over 36 weeks. Native bone regeneration was modeled using a sub-critical, 1 mm size defect, which healed uneventfully. Critical size defects of 5 mm were used to analyze impaired bone regeneration. In a third group, the 5 mm defects were filled with 11 µg of recombinant human bone morphogenetic protein 2 (rhBMP2) impregnated onto an absorbable collagen sponge, modeling its clinical use. Native bone regeneration was characterized by endochondral ossification with progressive remodeling to ultimately resemble intact femora. An endochondral response was also observed under conditions of impaired bone regeneration, but by week 8 medullary capping occurred with fibrofatty consolidation of the tissue within the defect, resembling an atrophic non-union. rhBMP2 treatment was associated with prolonged inflammatory cytokine expression and rapid intramembranous bone formation occurring with reduced expression of cartilage-associated collagens. Between weeks 4 and 36, rhBMP2-treated bones demonstrated decreased trabecular number and increased trabecular separation, which resulted in inferior mechanical properties compared with bones that healed naturally. Clinical Significance: Recombinant human bone morphogenetic protein 2 (rhBMP2) is used clinically to promote healing of long bones. Our data suggest that it drives intramembraneous ossification producing an inferior regenerate that deteriorates with time. Clinical outcomes would be improved by technologies favoring endochondral regenerative ossification.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Ratos , Humanos , Masculino , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/uso terapêutico , Cicatrização , Fêmur , Osteogênese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
10.
Osteoarthr Cartil Open ; 4(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36338933

RESUMO

Objective: To evaluate a single-step, gene-based procedure for repairing osteochondral lesions. Design: Osteochondral lesions were created in the patellar groove of skeletally mature rabbits. Autologous bone marrow aspirates were mixed with adenovirus vectors carrying cDNA encoding green fluorescent protein (Ad.GFP) or transforming growth factor-ß1 (Ad.TGF-ß1) and allowed to clot. The clotted marrow was press-fit into the defects. Animals receiving Ad.GFP were euthanized at 2 weeks and intra-articular expression of GFP examined by fluorescence microscopy. Animals receiving Ad.TGF-ß1 were euthanized at 3 months and 12 months; repair was compared to empty defects using histology and immunohistochemistry. Complementary in vitro experiments assessed transgene expression and chondrogenesis in marrow clots and fibrin gels. In a subsequent pilot study, repair at 3 months using a fibrin gel to encapsulate Ad.TGF-ß1 was evaluated. Results: At 2 weeks, GFP expression was seen at variable levels within the cartilaginous lesion. At 3 months, there was no statistically significant improvement (p > 0.05) in healing of lesions receiving Ad.TGF-ß1 and variability was high. At 12 months, there were still no significant difference (p > 0.05) between the empty defects and those receiving Ad.TGF-ß1 in the overall, cartilage, and bone scores. Variability was still high. In vitro experiments suggested that variability reflected variable transduction efficiency and chondrogenic activity of the marrow clots; using fibrin gels instead of marrow may address this issue but more research is needed. Conclusions: This approach to improving the repair of osteochondral lesions needs further refinement to reduce variability and provide a more robust outcome.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa