Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Food Technol Biotechnol ; 61(3): 339-349, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38022883

RESUMO

Research background: Protein A affinity chromatography is a well-established method currently used in the pharmaceutical industry. However, the high costs usually associated with chromatographic separation of protein A and the difficulties in continuous operation make the investigation of alternative purification methods very important. Experimental approach: In this study, extraction/back-extraction and precipitation/dissolution methods were developed and optimised. They were compared with protein A and cation exchange chromatography separations in terms of yield of monoclonal antibody (mAb) and amount of residual impurities, such as DNA and host cell proteins, and amount of mAb aggregates. For a comprehensive comparison of the different methods, experiments were carried out with the same cell-free fermentation broth containing adalimumab. Results and conclusions: Protein A and cation exchange chromatographic separations resulted in high yield and purity of adalimumab. The precipitation-based process resulted in high yield but with lower purity. The extraction-based purification resulted in low yield and purity. Thus, the precipitation-based method proved to be more promising than the extraction-based method for direct purification of adalimumab from harvested cell culture fluid. Novelty and scientific contribution: Although alternative purification methods may offer the advantages of simplicity and low-cost operation, further significant improvements are required to compete with the performance of chromatographic separations of adalimumab from true fermentation broth.

2.
Mol Pharm ; 18(1): 317-327, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33301326

RESUMO

This research aimed to compare two solvent-based methods for the preparation of amorphous solid dispersions (ASDs) made up of poorly soluble spironolactone and poly(vinylpyrrolidone-co-vinyl acetate). The same apparatus was used to produce, in continuous mode, drug-loaded electrospun (ES) and spray-dried (SD) materials from dichloromethane and ethanol-containing solutions. The main differences between the two preparation methods were the concentration of the solution and application of high voltage. During electrospinning, a solution with a higher concentration and high voltage was used to form a fibrous product. In contrast, a dilute solution and no electrostatic force were applied during spray drying. Both ASD products showed an amorphous structure according to differential scanning calorimetry and X-ray powder diffraction results. However, the dissolution of the SD sample was not complete, while the ES sample exhibited close to 100% dissolution. The polarized microscopy images and Raman microscopy mapping of the samples highlighted that the SD particles contained crystalline traces, which can initiate precipitation during dissolution. Investigation of the dissolution media with a borescope made the precipitated particles visible while Raman spectroscopy measurements confirmed the appearance of the crystalline active pharmaceutical ingredient. To explain the micro-morphological differences, the shape and size of the prepared samples, the evaporation rate of residual solvents, and the influence of the electrostatic field during the preparation of ASDs had to be considered. This study demonstrated that the investigated factors have a great influence on the dissolution of the ASDs. Consequently, it is worth focusing on the selection of the appropriate ASD preparation method to avoid the deterioration of dissolution properties due to the presence of crystalline traces.


Assuntos
Solubilidade/efeitos dos fármacos , Espironolactona/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Dessecação/métodos , Composição de Medicamentos/métodos , Polímeros/química , Difração de Pó/métodos , Pós/química , Pirrolidinas/química , Solventes/química , Secagem por Atomização , Compostos de Vinila/química , Difração de Raios X/métodos
3.
AAPS PharmSciTech ; 21(6): 214, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737608

RESUMO

A model anaerobic bacterium strain from the gut microbiome (Clostridium butyricum) producing anti-inflammatory molecules was incorporated into polymer-free fibers of a water-soluble cyclodextrin matrix (HP-ß-CD) using a promising scaled-up nanotechnology, high-speed electrospinning. A long-term stability study was also carried out on the bacteria in the fibers. Effect of storage conditions (temperature, presence of oxygen) and growth conditions on the bacterial viability in the fibers was investigated. The viability of the sporulated anaerobic bacteria in the fibers was maintained during 12 months of room temperature storage in the presence of oxygen. Direct compression was used to prepare tablets from the produced bacteria-containing fibers after milling (using an oscillating mill) and mixing with tableting excipients, making easy oral administration of the bacteria possible. No significant decrease was observed in bacterial viability following the processing of the fibers (milling and tableting).


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Clostridium butyricum/isolamento & purificação , Composição de Medicamentos , Microbioma Gastrointestinal , Anaerobiose , Bactérias Anaeróbias/genética , Clostridium butyricum/genética , Excipientes , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Comprimidos , Temperatura
4.
Mol Pharm ; 15(8): 3308-3317, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29957955

RESUMO

The aim of this research was to investigate the driving force of membrane transport through size-exclusion membranes and to provide a concentration-based mathematical description of it to evaluate whether it can be an alternative for lipophilic membranes in the formulation development of amorphous solid dispersions. Carvedilol, an antihypertensive drug, was chosen and formulated using solvent-based electrospinning to overcome the poor water solubility of the drug. Vinylpyrrolidone-vinyl acetate copolymer (PVPVA64) and Soluplus were used to create two different amorphous solid dispersions of the API. The load-dependent effect of the additives on dissolution and permeation through regenerated cellulose membrane was observed by a side-by-side diffusion cell, µFLUX. The solubilizing effect of the polymers was studied by carrying out thermodynamic solubility assays. The supersaturation ratio (SSR, defined as the ratio of dissolved amount of the drug to its thermodynamic solubility measured in exactly the same medium) was found to be the driving force of membrane transport in the case of size-exclusion membranes. Although the transport through lipophilic and size-exclusion membranes is mechanistically different, in both cases, the driving force of membrane transport in the presence of polymer additives was found to be the same. This finding may enable the use of size-exclusion membranes as an alternative to lipid membranes in formulation development of amorphous solid dispersions.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Excipientes/farmacologia , Pirrolidinas/farmacologia , Compostos de Vinila/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Carvedilol/química , Carvedilol/farmacocinética , Desenvolvimento de Medicamentos , Excipientes/química , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polivinil/química , Polivinil/farmacologia , Pirrolidinas/química , Solubilidade , Compostos de Vinila/química
5.
Drug Dev Ind Pharm ; 43(7): 1126-1133, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28274133

RESUMO

The bioavailability of the anthelminthic flubendazole was remarkably enhanced in comparison with the pure crystalline drug by developing completely amorphous electrospun nanofibres with a matrix consisting of hydroxypropyl-ß-cyclodextrin and polyvinylpyrrolidone. The thus produced formulations can potentially be active against macrofilariae parasites causing tropical diseases, for example, river blindness and elephantiasis, which affect altogether more than a hundred million people worldwide. The bioavailability enhancement was based on the considerably improved dissolution. The release of a dose of 40 mg could be achieved within 15 min. Accordingly, administration of the nanofibrous system ensured an increased plasma concentration profile in rats in contrast to the practically non-absorbable crystalline flubendazole. Furthermore, easy-to-grind fibers could be developed, which enabled compression of easily administrable immediate release tablets.


Assuntos
Mebendazol/análogos & derivados , Nanofibras/química , Povidona/química , Comprimidos/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Cristalização , Mebendazol/administração & dosagem , Mebendazol/química , Ratos
6.
Mol Pharm ; 13(11): 3816-3826, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27611057

RESUMO

The aim of this study was to investigate the impact of formulation excipients and solubilizing additives on dissolution, supersaturation, and membrane transport of an active pharmaceutical ingredient (API). When a poorly water-soluble API is formulated to enhance its dissolution, additives, such as surfactants, polymers, and cyclodextrins, have an effect not only on dissolution profile but also on the measured physicochemical properties (solubility, pKa, permeability) of the drug while the excipient is present, therefore also affecting the driving force of membrane transport. Meloxicam, a nonsteroidal anti-inflammatory drug, was chosen as a poorly water-soluble model drug and formulated in order to enhance its dissolution using solvent-based electrospinning. Three polyvinylpyrrolidone (PVP) derivatives (K30, K90, and VA 64), Soluplus, and (2-hydroxypropyl)-ß-cyclodextrin were used to create five different amorphous solid dispersions of meloxicam. Through experimental design, the various formulation additives that could influence the characteristics of dissolution and permeation through artificial membrane were observed by carrying out a simultaneous dissolution-permeation study with a side-by-side diffusion cell, µFLUX. Although the dissolution profiles of the formulations were found to be very similar, in the case of Soluplus containing formulation the flux was superior, showing that the driving force of membrane transport cannot be simplified to the concentration gradient. Supersaturation gradient, the difference in degree of supersaturation (defined as the ratio of dissolved amount of the drug to its thermodynamic solubility) between the donor and acceptor side, was found to be the driving force of membrane transport. It was mathematically derived from Fick's first law, and experimentally proved to be universal on several meloxicam containing ASDs and DMSO stock solution.


Assuntos
Modelos Teóricos , Polímeros/química , Soluções/química , Dimetil Sulfóxido/química , Meloxicam , Estrutura Molecular , Nanofibras/química , Polietilenoglicóis/química , Polivinil/química , Povidona/química , Tiazinas/química , Tiazóis/química , beta-Ciclodextrinas/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123906, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38277781

RESUMO

Cell culture media are essential for large-scale recombinant protein production using mammalian cell cultures. The composition and quality of media significantly impact cell growth and product formation. Analyzing media poses challenges due to complex compositions and undisclosed exact compositions. Traditional methods like NMR and chromatography offer sensitivity but require time-consuming sample preparation and lack spatial information. Raman chemical mapping characterizes solids, but its use in cell culture media analysis is limited so far. We present a chemometric evaluation for Raman maps to qualify and quantify media components, evaluate powder homogeneity, and perform lot-to-lot comparisons. Three lots of a marketed cell culture media powder were measured with Raman mapping technique. Chemometrics techniques have outlined a strategy to extract information from complex data. First, a spectral library has been structured. In addition to the 23 spectra for presumed ingredients, we obtained another 9 pure components with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Then the Spectral Angle Mapper-Orthogonal Projection (SAM-OP) algorithm revealed whether references actually occur in the mapped media powders. Finally, a quantification was provided by Classical Least Squares (CLS) modelling. Quantities of 18 significant amino acids mostly correlated with the reference method. The proposed method can be generally applied even for such complicated samples. Leveraging Raman mapping and innovative chemometric methods enhance recombinant protein production by improving the understanding of the spatial distribution and composition of cell culture media in mammalian cell cultivations.


Assuntos
Técnicas de Cultura de Células , Microscopia , Animais , Pós , Técnicas de Cultura de Células/métodos , Proteínas Recombinantes , Análise dos Mínimos Quadrados , Análise Espectral Raman/métodos , Meios de Cultura/química , Análise Multivariada , Mamíferos
8.
Int J Pharm ; 660: 124251, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797253

RESUMO

This research shows the detailed comparison of Raman and near-infrared (NIR) spectroscopy as Process Analytical Technology tools for the real-time monitoring of a protein purification process. A comprehensive investigation of the application and model development of Raman and NIR spectroscopy was carried out for the real-time monitoring of a process-related impurity, imidazole, during the tangential flow filtration of Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike protein. The fast development of Raman and NIR spectroscopy-based calibration models was achieved using offline calibration data, resulting in low calibration and cross-validation errors. Raman model had an RMSEC of 1.53 mM, and an RMSECV of 1.78 mM, and the NIR model had an RMSEC of 1.87 mM and an RMSECV of 2.97 mM. Furthermore, Raman models had good robustness when applied in an inline measurement system, but on the contrary NIR spectroscopy was sensitive to the changes in the measurement environment. By utilizing the developed models, inline Raman and NIR spectroscopy were successfully applied for the real-time monitoring of a process-related impurity during the membrane filtration of a recombinant protein. The results enhance the importance of implementing real-time monitoring approaches for the broader field of diagnostic and therapeutic protein purification and underscore its potential to revolutionize the rapid development of biological products.

9.
Eur J Pharm Biopharm ; 189: 165-173, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321328

RESUMO

In the last decades, continuous manufacturing (CM) has become a research priority in the pharmaceutical industry. However, significantly fewer scientific researches address the investigation of integrated, continuous systems, a field that needs further exploration to facilitate the implementation of CM lines. This research outlines the development and optimization of an integrated, polyethylene glycol aided melt granulation-based powder-to-tablet line that operates fully continuously. The flowability and tabletability of a caffeine-containing powder mixture were improved through twin-screw melt granulation resulting in the production of tablets with improved breaking force (from 15 N to over 80 N), excellent friability, and immediate release dissolution. The system was also conveniently scaleable: the production speed could be increased from 0.5 kg/h to 8 kg/h with only minimal changes in the process parameters and using the same equipment. Thereby the frequent challenges of scale-up can be avoided, such as the need for new equipment and separate optimization.


Assuntos
Excipientes , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Pós , Tamanho da Partícula , Comprimidos , Tecnologia Farmacêutica/métodos
10.
Int J Pharm ; 626: 122197, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115464

RESUMO

Glucose is widely used in both the food and pharmaceutical industry. However, the application of industrially crystallized glucose in solid dosage forms is challenged by its poor flowability and tabletability. To improve these characteristics continuous twin-screw granulation was tested, which has the potential to be integrated into the continuous production of solid glucose from corn starch. A completely continuous manufacturing line (including drying and milling) was developed and the different production steps were examined and synchronized. Our line was supplemented with an in-line applicable near-infrared spectroscopic probe to monitor the moisture content of the milled granules in real-time. The flowability and tabletability of the powder improved significantly, and tablets with acceptable breaking force (greater than 100 N) could be prepared from the granules. The developed continuous line can be easily installed into the industrial solid glucose production process resulting in pure glucose granules with adequate flow properties and tabletability in a simple, continuous and efficient way.


Assuntos
Glucose , Amido , Composição de Medicamentos/métodos , Tamanho da Partícula , Pós/química , Amido/química , Comprimidos/química , Tecnologia Farmacêutica/métodos
11.
AAPS J ; 24(1): 22, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34988721

RESUMO

The work aimed to develop the Absorption Driven Drug Formulation (ADDF) concept, which is a new approach in formulation development to ensure that the drug product meets the expected absorption rate. The concept is built on the solubility-permeability interplay and the rate of supersaturation as the driving force of absorption. This paper presents the first case study using the ADDF concept where not only dissolution and solubility but also permeation of the drug is considered in every step of the formulation development. For that reason, parallel artificial membrane permeability assay (PAMPA) was used for excipient selection, small volume dissolution-permeation apparatus was used for testing amorphous solid dispersions (ASDs), and large volume dissolution-permeation tests were carried out to characterize the final dosage forms. The API-excipient interaction studies on PAMPA indicated differences when different fillers or surfactants were studied. These differences were then confirmed with small volume dissolution-permeation assays where the addition of Tween 80 to the ASDs decreased the flux dramatically. Also, the early indication of sorbitol's advantage over mannitol by PAMPA has been confirmed in the investigation of the final dosage forms by large-scale dissolution-permeation tests. This difference between the fillers was observed in vivo as well. The presented case study demonstrated that the ADDF concept opens a new perspective in generic formulation development using fast and cost-effective flux-based screening methods in order to meet the bioequivalence criteria. Graphical Abstract.


Assuntos
Desenvolvimento de Medicamentos/métodos , Medicamentos Genéricos/administração & dosagem , Excipientes/química , Preparações Farmacêuticas/administração & dosagem , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Medicamentos Genéricos/química , Medicamentos Genéricos/farmacocinética , Humanos , Membranas Artificiais , Permeabilidade , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Estudo de Prova de Conceito , Solubilidade , Tensoativos/química , Equivalência Terapêutica
12.
Int J Pharm ; 613: 121413, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34954004

RESUMO

The present paper reports the powder filling of milled electrospun materials in vials, which contained voriconazole and sulfobutylether-ß-cyclodextrin. High-speed electrospinning was used for the production of the fibrous sample, which was divided into 6 parts. Each portion was milled using different milling methods and sizes of sieves to investigate whether the milling influences the powder and filling properties. Bulk and tapped density tests, laser diffraction and angle of repose measurements were applied to characterize the milled powders, while a vibratory feeder was used for the feeding experiments. The correlation between the material property descriptors and the feeding responses was investigated by multivariate data analysis. Based on the results, three samples were chosen for the vial filling, which was accomplished with 3400 mg electrospun material containing 200 mg voriconazole, representative of the commercial product. The feed rate was set to fit the 240 g/h production rate of the electrospinning and the relative standard deviation of three repeated vial filling was determined to see the accuracy of the process. This research shows that by applying a suitable milling method it is possible to process electrospun fibers to a powder, which can be filled into vials and used as reconstitution dosage forms.


Assuntos
Emolientes , Tecnologia Farmacêutica , Pós , Estudo de Prova de Conceito , Voriconazol
13.
Pharmaceutics ; 13(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068724

RESUMO

In pharmaceutical sciences, visual inspection is one of the oldest methods used for description in pharmacopeias and is still an important part of the characterization and qualification of active ingredients, excipients, and dosage forms. With the development of technology, it is now also possible to take images of various pharmaceutical dosage forms with different imaging methods in a size range that is hardly visible or completely invisible to the human eye. By analyzing high-quality designs, physicochemical processes can be understood, and the results can be used even in the optimization of the composition of the dosage form and in the development of its production. The present study aims to show some of the countless ways image analysis can be used in the manufacturing and quality assessment of different dosage forms. This summary also includes measurements and an evaluation of, amongst others, a less studied dosage form, medicated foams.

14.
Eur J Pharm Sci ; 164: 105907, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118411

RESUMO

Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun fibers have been demonstrated in several studies, however, continuous manufacturing of tablets have not been realized yet. This research presents the first integrated continuous processing of milled drug-loaded electrospun materials to tablet form supplemented by process analytical tools for monitoring the active pharmaceutical ingredient (API) content. Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9 µm were continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers and excipients leaving the continuous blender was characterized with a bulk density of 0.43 g/cm3 and proved to be suitable for direct tablet compression. The ASD content, and thus the API content was determined in-line before tableting and at-line after tableting using near-infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content uniformity requirement based on the API content of ten randomly selected tablets. This work highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle drying, low energy consumption, and amorphous products with high specific surface area) and the continuous technologies opens a new and effective way in the field of manufacturing of the poorly water-soluble APIs.


Assuntos
Excipientes , Análise Espectral Raman , Dessecação , Composição de Medicamentos , Itraconazol , Comprimidos , Tecnologia Farmacêutica
15.
Int J Pharm ; 591: 120042, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157211

RESUMO

Solid formulations of monoclonal antibodies present several advantages, such as improved stability and increased shelf-life as well as simpler storage and transportation. In this study, we present a gentle drying technology for monoclonal antibodies, applying the water soluble 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as matrix, to prepare a solid reconstitution dosage form. High-speed electrospinning of an aqueous infliximab-containing HP-ß-CD solution was carried out at 25 °C resulting in fibers with an average diameter of 2.5 µm. The mAb-loaded electrospun fibers were successful to preserve the stability of infliximab in solid form. The results of size exclusion chromatography and gel electrophoresis indicated no significant increase in aggregate formation during the electrospinning process compared to the initial matrix solution. The binding activity of infliximab was preserved during electrospinning compared to the reference liquid formulation. Due to the enhanced surface area, excellent reconstitution capability, i.e. clear solution within 2 min without any vigorous mixing, could be achieved in a small-scale reconstitution test. The results of this work demonstrate that high-speed electrospinning is a very promising technique to manufacture the solid formulation of monoclonal antibodies for applications such as fast reconstitutable powders.


Assuntos
Anticorpos Monoclonais , Dessecação , 2-Hidroxipropil-beta-Ciclodextrina , Pós , Solubilidade , Água
16.
Eur J Pharm Sci ; 141: 105089, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626967

RESUMO

The goals of this work were to evaluate if high-speed electrospinning can be used as a gentle and continuous drying technology to produce protein-containing cyclodextrin-based fibers from an aqueous solution and to convert the produced protein-cyclodextrin fibers into a directly compressible powder. A 400 mL/h feeding rate was used during the electrospinning experiments, corresponding to a ~270 g/h production rate of the dried material. The produced fibers were collected in a cyclone. The fibers were found grindable without secondary drying, and the ground powder was mixed with tableting excipients and was successfully tableted by direct compression. The model protein-type drug (ß-galactosidase) remained stable during each of the processing steps (electrospinning, grinding, tableting) and after 6 months of storage at room temperature in the tablets. The obtained results demonstrate that high speed electrospinning can be a gentle alternative to traditional drying methods used for protein-type drugs, and that tablet formulation is achievable from the electrospun material prepared this way.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Tecnologia Farmacêutica/métodos , beta-Galactosidase/química , Dessecação , Estabilidade Enzimática , Pós , Comprimidos
17.
Artigo em Inglês | MEDLINE | ID: mdl-31863572

RESUMO

Recently, electrospinning (ES) of fibers has been shown to be an attractive strategy for drug delivery. One of the main features of ES is that a wide variety of drugs can be loaded into the fibers to improve their bioavailability, to enhance dissolution, or to achieve controlled release. Besides, ES is a continuous technology with low energy consumption, which can make it a very economic production alternative to the widely used freeze drying and spray drying. However, the low production rate of laboratory-scaled ES has limited the industrial application of the technology so far. This article covers the various ES technologies developed for scaled-up fiber production with an emphasis on pharmaceutically relevant examples. The methods used for increasing the productivity are complied, which is followed by a review of specific examples from literature where these technologies are utilized to produce oral drug delivery systems. The different technologies are compared in terms of their basic principles, advantages, and limitations. Finally, the different downstream processing options to prepare tablets or capsules containing the electrospun drug are covered as well. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Indústria Farmacêutica , Nanotecnologia , Sistemas de Liberação de Medicamentos , Humanos , Nanofibras/química
18.
Pharmaceutics ; 11(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817454

RESUMO

Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more and more popular in the pharmaceutical field because the dissolution of poorly water-soluble drugs can be effectively improved this way, which can lead to increased bioavailability in many cases. During downstream processing of ASDs, technologists need to keep in mind both traditional challenges and the newest trends. In the last decade, the pharmaceutical industry began to display considerable interest in continuous processing, which can be explained with their potential advantages such as smaller footprint, easier scale-up, and more consistent product, better quality and quality assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe. However, developments can be challenging due to the poor flowability and feeding properties of ASDs. Consequently, this review pays special attention to these characteristics since the feeding of the components greatly influences the content uniformity in the final dosage form. The main purpose of this paper is to summarize the most important steps of the possible ASD-based continuous downstream processes in order to give a clear overview of current course lines and future perspectives.

19.
Pharmaceutics ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336743

RESUMO

The aims of this work were to develop a processable, electrospun formulation of a model biopharmaceutical drug, ß-galactosidase, and to demonstrate that higher production rates of biopharmaceutical-containing fibers can be achieved by using high-speed electrospinning compared to traditional electrospinning techniques. An aqueous solution of 7.6 w/w% polyvinyl alcohol, 0.6 w/w% polyethylene oxide, 9.9 w/w% mannitol, and 5.4 w/w% ß-galactosidase was successfully electrospun with a 30 mL/h feeding rate, which is about 30 times higher than the feeding rate usually attained with single-needle electrospinning. According to X-ray diffraction measurements, polyvinyl alcohol, polyethylene oxide, and ß-galactosidase were in an amorphous state in the fibers, whereas mannitol was crystalline (δ-polymorph). The presence of crystalline mannitol and the low water content enabled appropriate grinding of the fibrous sample without secondary drying. The ground powder was mixed with excipients commonly used during the preparation of pharmaceutical tablets and was successfully compressed into tablets. ß-galactosidase remained stable during each of the processing steps (electrospinning, grinding, and tableting) and after one year of storage at room temperature in the tablets. The obtained results demonstrate that high-speed electrospinning is a viable alternative to traditional biopharmaceutical drying methods, especially for heat sensitive molecules, and tablet formulation is achievable from the electrospun material prepared this way.

20.
Biotechnol Prog ; 35(5): e2848, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31115976

RESUMO

Raman spectroscopy as a process analytical technology tool was implemented for the monitoring and control of ethanol fermentation carried out with Saccharomyces cerevisiae. The need for the optimization of bioprocesses such as ethanol production, to increase product yield, enhanced the development of control strategies. The control system developed by the authors utilized noninvasive Raman measurements to avoid possible sterilization problems. Real-time data analysis was applied using partial least squares regression (PLS) method. With the aid of spectral pretreatment and multivariate data analysis, the monitoring of glucose and ethanol concentration was successful during yeast fermentation with the prediction error of 4.42 g/L for glucose and 2.40 g/L for ethanol. By Raman spectroscopy-based feedback control, the glucose concentration was maintained at 100 g/L by the automatic feeding of concentrated glucose solution. The control of glucose concentration during fed-batch fermentation resulted in increased ethanol production. Ethanol yield of 86% was achieved compared to the batch fermentation when 75% yield was obtained. The results show that the use of Raman spectroscopy for the monitoring and control of yeast fermentation is a promising way to enhance process understanding and achieve consistently high production yield.


Assuntos
Etanol , Fermentação/fisiologia , Glucose , Análise Espectral Raman/métodos , Reatores Biológicos , Meios de Cultura/química , Meios de Cultura/metabolismo , Desenho de Equipamento , Etanol/análise , Etanol/metabolismo , Glucose/análise , Glucose/metabolismo , Saccharomyces cerevisiae , Análise Espectral Raman/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa