Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Craniofac Surg ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453769

RESUMO

Late secondary reconstruction is sometimes required in patients with suboptimal primary panfacial fracture repair. At this stage, it can be difficult to discern original facial architecture due to malunion and bony remodeling. By utilizing the original postinjury CT scan to complete fracture reduction in the virtual reality (VR) planning environment, the surgeon may attempt to recreate an "ideal" facial bony anatomy for patients. This technique was completed in 2 patients presenting with facial deformity secondary to malunited panfacial fracture. Each had a cone-beam CT (CBCT) scan taken at presentation and the initial postinjury CT scans were obtained. Fracture reductions were completed in VR to recreate the preinjury anatomy. The resulting model was overlaid with current anatomy to create surgical aids. The first patient, a 23-year-old man, presented with malunion of all bones of the midface. Cutting guides were designed for the Lefort 1 segment, left zygomaticomaxillary complex (ZMC), and naso-orbito-ethmoid (NOE) osteotomies. The second patient, a 30-year-old woman, had bilateral ZMC and subcondylar fractures, midface retrusion, and malunion of parasymphyseal fracture. A 2-stage procedure was planned, including an initial Lefort I and bilateral sagittal split osteotomy with midline wedge excision. To address malar projection, a second surgery was planned using custom MEDPOR midface implants for the NOE and zygomatic regions. Both patients were discharged home, and all surgical goals and esthetic objectives were achieved.

2.
Chembiochem ; 19(18): 1944-1948, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29953718

RESUMO

Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super-resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics over minutes to days. We imaged amyloid fibrils from multiple polypeptides, oligomeric, and fibrillar structures formed during different stages of amyloid-ß aggregation, as well as the structural remodeling of amyloid-ß fibrils by the compound epi-gallocatechin gallate.


Assuntos
Peptídeos beta-Amiloides/análise , Amiloide/análise , Benzotiazóis/análise , Corantes Fluorescentes/análise , Imagem Óptica/métodos , Agregação Patológica de Proteínas/diagnóstico por imagem , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/ultraestrutura , Desenho de Equipamento , Humanos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Óptica/instrumentação , Agregados Proteicos , Agregação Patológica de Proteínas/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-38767767

RESUMO

PURPOSE: Age-matched average 3D models facilitate both surgical planning and intraoperative guidance of cranial birth defects such as craniosynostosis. We aimed to develop an algorithm that accepts any number of CT scans as input and generates highly accurate, average models with minimal user input that are ready for 3D printing and clinical use. METHODS: Using a compiled database of 'normal' pediatric computed tomography (CT) scans, we report Normscan, an open-source platform built in Python that allows users to generate normative models of CT scans through user-defined landmarks. We use the basion, nasion, and left and right porions as anatomical landmarks for initial correspondence and then register the models using the iterative closest points algorithm before downstream averaging. RESULTS: Normscan is fast and easy to use via our user interface and also creates highly accurate average models of any number of input models. Additionally, it is highly repeatable, with coefficients of variance for the surface area and volume of the average model being less than 3% across ten independent trials. Average models can then be 3D printed and/or visualized in augmented reality. CONCLUSIONS: Normscan provides an end-to-end pipeline for the creation of average models of skulls. These models can be used for the generation of databases of specific demographic anatomical models as well as for intraoperative guidance and surgical planning. While Normscan was designed for craniosynostosis repair, due to the modular nature of the algorithm, Normscan has many applications in other areas of surgical planning and research.

4.
J Plast Reconstr Aesthet Surg ; 98: 158-160, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39255523

RESUMO

This study assesses ChatGPT's (GPT-3.5) performance on the 2021 ASPS Plastic Surgery In-Service Examination using prompt modifications and Retrieval Augmented Generation (RAG). ChatGPT was instructed to act as a "resident," "attending," or "medical student," and RAG utilized a curated vector database for context. Results showed no significant improvement, with the "resident" prompt yielding the highest accuracy at 54%, and RAG failing to enhance performance, with accuracy remaining at 54.3%. Despite appropriate reasoning when correct, ChatGPT's overall performance fell in the 10th percentile, indicating the need for fine-tuning and more sophisticated approaches to improve AI's utility in complex medical tasks.

5.
Mucosal Immunol ; 15(5): 799-808, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468942

RESUMO

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated in the oral cavity in response to COVID-19 vaccination. We collected serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines and measured the level of anti-SARS-CoV-2 Ab. We detected anti-Spike and anti-Receptor Binding Domain (RBD) IgG and IgA, as well as anti-Spike/RBD associated secretory component in the saliva of most participants after dose 1. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited diminished anti-Spike/RBD IgG levels, although secretory component-associated anti-Spike Ab were more stable. Examining two prospective cohorts we found that participants who experienced breakthrough infections with SARS-CoV-2 variants had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data suggest that COVID-19 vaccines that elicit a durable IgA response may have utility in preventing infection. Our study finds that a local secretory component-associated IgA response is induced by COVID-19 mRNA vaccination that persists in some, but not all participants. The serum and saliva IgA response modestly correlate at 2-4 weeks post-dose 2. Of note, levels of anti-Spike serum IgA (but not IgG) at this timepoint are lower in participants who subsequently become infected with SARS-CoV-2. As new surges of SARS-CoV-2 variants arise, developing COVID-19 booster shots that provoke high levels of IgA has the potential to reduce person-to-person transmission.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , RNA Mensageiro/genética , SARS-CoV-2 , Componente Secretório , Vacinação
6.
J Mol Biol ; 433(8): 166878, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33610557

RESUMO

Alpha-synuclein (α-syn) fibrils, a major constituent of the neurotoxic Lewy Bodies in Parkinson's disease, form via nucleation dependent polymerization and can replicate by a seeding mechanism. Brazilin, a small molecule derived from red cedarwood trees in Brazil, has been shown to inhibit the fibrillogenesis of amyloid-beta (Aß) and α-syn as well as remodel mature fibrils and reduce cytotoxicity. Here we test the effects of Brazilin on both seeded and unseeded α-syn fibril formation and show that the natural polyphenol inhibits fibrillogenesis of α-syn by a unique mechanism that alters conformational equilibria in two separate points of the assembly mechanism: Brazilin preserves the natively unfolded state of α-syn by specifically binding to the compact conformation of the α-syn monomer. Brazilin also eliminates seeding competence of α-syn assemblies from Parkinson's disease patient brain tissue, and reduces toxicity of pre-formed assemblies in primary neurons by inducing the formation of large fibril clusters. Molecular docking of Brazilin shows the molecule to interact both with unfolded α-syn monomers and with the cross-ß sheet structure of α-syn fibrils. Our findings suggest that Brazilin has substantial potential as a neuroprotective and therapeutic agent for Parkinson's disease.


Assuntos
Benzopiranos/química , Benzopiranos/farmacologia , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Neurônios , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa